Skip to main content
Log in

Design and Investigation of Molybdenum Modified Platinum Surfaces for Modeling of CO Tolerant Electrocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mo overlayers were prepared on smooth polycrystalline platinum and platinized platinum electrode surfaces by in situ electrochemical deposition of molybdenum oxide at potential below 500 mV for modeling Mo–Pt electrocatalysts. Correlations were found between the applied potential and the amount of deposited Mo, which never exceeded a monolayer, thus Pt–Mo bonds stabilize the deposited Mo oxide. Electrochemical measurements suggested that Mo deposited from a Mo(VI) solution was reduced to the 4+ oxidation state. In line with the ex situ XPS findings a certain part (20–25%) of the initial Mo layer remained irreversibly adsorbed on the Pt/Pt electrode even after oxidation into the 6+ state at high potentials; this fractional monolayer cannot be dissolved even by prolonged cyclic polarization up to 1000 mV. It has been demonstrated that the irreversibly bound Mo partial monolayer is enough to change significantly the CO poisoning properties of the Pt surface. On this Mo:Pt (1:4) surface CO oxidation is initiated at extremely low potentials (ca. 100 mV). Moreover, only Pt modified by Mo(IV) species is active in low-potential CO oxidation reaction as after oxidizing the irreversibly adsorbed Mo to the 6+ state, CO oxidation is no longer observable. Nevertheless, the catalyst can be reactivated by reduction of molybdenum into the 4+ oxidation state. However, this reduction requires clean, CO-free Pt surface. If Pt is largely covered by CO, reduction of Mo(VI) into Mo(IV) does not occur and thus the low potential CO oxidation remains hindered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843

    Article  CAS  Google Scholar 

  2. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35

    CAS  Google Scholar 

  3. Elezović NR, Gajić-Krstajić LjM, Vračar LjM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrog Energy 35:12878–12887

    Article  CAS  Google Scholar 

  4. Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949

    Article  CAS  Google Scholar 

  5. Muhamad EN, Takeguchi T, Wang F, Wang G, Yamanaka T, Ueda W (2009) A comparative study of variously prepared carbon-supported Pt/MoOx anode catalysts for a polymer electrolyte fuel cell. J Electrochem Soc 156:B1361–B1368

    Article  CAS  Google Scholar 

  6. Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrog Energy 37:15948–15955

    Article  CAS  Google Scholar 

  7. Martins PFBD, Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2(9):1298–1306

    Article  CAS  Google Scholar 

  8. Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193

    Article  CAS  PubMed  Google Scholar 

  9. Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998

    Article  CAS  Google Scholar 

  10. Borbath I, Guban D, Bakos I, Paszti Z, Gajdos G, Sajo IE, Vass Á, Tompos A (2018) Exclusive formation of alloy phases via anchoring technique—from bimetallic catalysts to electrocatalysis. Catal Today 306:58–70

    Article  CAS  Google Scholar 

  11. Gubán D, Tompos A, Bakos I, Pászti Z, Gajdos G, Sajó IE, Borbáth I (2017) CO oxidation and oxygen reduction activity of bimetallic Sn-Pt electrocatalysts on carbon: effect of the microstructure and the exclusive formation of the Pt3Sn alloy. React Kinet Mech Catal 121:43–67

    Article  CAS  Google Scholar 

  12. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2(1):12–15

    Article  CAS  Google Scholar 

  13. Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619

    Article  CAS  Google Scholar 

  14. Papakonstantinou G, Paloukis F, Siokou A, Neophytides SG (2007) The electrokinetics of CO oxidation on Pt4Mo(20 wt %)/C interfaced with Nafion membrane. J Electrochem Soc 154(10):B989–B997

    Article  CAS  Google Scholar 

  15. Mukerjee S, Urian RC, Lee SJ, Ticianelli EA, McBreen J (2004) Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. J Electrochem Soc 151:A1094–A1103

    Article  CAS  Google Scholar 

  16. Papageorgopoulos DC, Keijzer M, de Bruijn FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3 electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204

    Article  CAS  Google Scholar 

  17. Lee SA, Park KW, Choi JH, Kwon BK, Sung YE (2002) Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J Electrochem Soc 149(10):A1299–A1304

    Article  CAS  Google Scholar 

  18. Gateiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301

    Article  Google Scholar 

  19. Ross PN Jr, Kinoshita K, Scarpellino AJ, Stonehart P (1975) Electrocatalysis on binary alloys. II. Oxidation of molecular hydrogen on supported Pt + Ru alloys. J Electroanal Chem 63:97–110

    Article  CAS  Google Scholar 

  20. Grgur BN, Zhuang G, Markovic NM, Ross PN (1997) Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 101:3910–3913

    Article  CAS  Google Scholar 

  21. Grgur BN, Markovic NM, Ross PN (1998) Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J Phys Chem B 102:2494–2501

    Article  CAS  Google Scholar 

  22. Dos Anjos DM, Kokoh KB, Léger JM, De Andrade AR, Olivi P, Tremiliosi-Filho G (2006) Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J Appl Electrochem 36:1391–1397

    Article  CAS  Google Scholar 

  23. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314

    Article  CAS  Google Scholar 

  24. Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrog Energy 39:5074–5082

    Article  CAS  Google Scholar 

  25. Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654

    Article  CAS  Google Scholar 

  26. Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498

    Article  CAS  Google Scholar 

  27. Ma L, Zhao X, Si F, Liu C, Liao J, Liang L, Xing W (2010) A comparative study of Pt/C and Pt-MoOx/C catalysts with various compositions for methanol electro-oxidation. Electrochim Acta 55:9105–9112

    Article  CAS  Google Scholar 

  28. Elezović NR, Babić BM, Radmilović VR, Gojković SLj, Krstajić NV, Vračar LjM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175:250–255

    Article  CAS  Google Scholar 

  29. Pozio A, Giorgi L, Antolini E, Passalacqua E (2000) Electroxidation of H2 on Pt/C, Pt-Ru/C and Pt-Mo/C anodes for polymer electrolyte fuel cell. Electrochim Acta 46:555–561

    Article  CAS  Google Scholar 

  30. Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967

    Article  CAS  Google Scholar 

  31. Li R, Hao H, Huang T, Yu A (2012) Electrodeposited Pd-MoOx catalysts with enhanced catalytic activity for formic acid electrooxidation. Electrochim Acta 76:292–299

    Article  CAS  Google Scholar 

  32. Vellacheri R, Unni SM, Nahire S, Kharul UK, Kurungot S (2010) Pt-MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature polymer electrolyte membrane fuel cell applications. Electrochim Acta 55:2878–2887

    Article  CAS  Google Scholar 

  33. Ordóñez LC, Roquero P, Sebastian PJ, Ramírez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrog Energy 32:3147–3153

    Article  CAS  Google Scholar 

  34. Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230

    Article  CAS  Google Scholar 

  35. Martínez-Huerta MV, Rodríguez JL, Tsiouvaras N, Pena MA, Fierro JLG, Pastor E (2008) Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem Mater 20:4249–4259

    Article  CAS  Google Scholar 

  36. Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2(9):437–439

    Article  CAS  Google Scholar 

  37. Òªakar İ, Özdokur KV, Demir B, Yavuz E, Demirkol DO, Koçak S, Timur S, Ertaș FN (2013) Molybdenum oxide/platinum modified glassy carbon electrode: a novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sens Actuators B 185:331–336

    Article  CAS  Google Scholar 

  38. Yavuz E, Özdokur KV, Cakar I, Kocak S, Ertas FN (2015) Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim Acta 151:72–80

    Article  CAS  Google Scholar 

  39. Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692

    Article  CAS  Google Scholar 

  40. Massong H, Wang H, Samjeské G, Baltruschat H (2000) The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim Acta 46:701–707

    Article  CAS  Google Scholar 

  41. Cafarova SF, Aliyev AS, Elrouby M, Soltanova N, Tagiyev DB (2015) Studying the electrochemical deposition process of molybdenum from aqueous solution of molybdate ions. J Electrochem Sci Eng 5(4):231–235

    Article  CAS  Google Scholar 

  42. Lu J, Li WS, Du JH, Fu JM (2005) Co-deposition of Pt-HxMoO3 and its catalysis on methanol oxidation in sulfuric acid solution. J New Mater Electrochem Syst 8:5–14

    CAS  Google Scholar 

  43. Shropshire JA (1965) The catalysis of the electrochemical oxidation of formaldehyde and methanol by molybdates. J Electrochem Soc 112:467–469

    Article  Google Scholar 

  44. Nakajima H, Kita H (1990) The role of surface molybdenum species in methanol oxidation on the platinum electrode. Electrochim Acta 35:849–853

    Article  CAS  Google Scholar 

  45. Horkans J, Shafer MW (1977) Effect of orientation, composition, and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten. J Electrochem Soc 124:1196–1202

    Article  CAS  Google Scholar 

  46. Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558

    Article  CAS  Google Scholar 

  47. De Rosa L, Tomachuk CR, Springer J, Mitton DB, Saiello S, Bellucci F (2004) The wet corrosion of molybdenum thin film. Part I: behavior at 25 °C. Mater Corros 55:602–609

    Article  CAS  Google Scholar 

  48. Borgschulte A, Sambalova O, Delmelle R, Jenatsch S, Hany R, Nüesch F (2017) Hydrogen reduction of molybdenum oxide at room temperature. Sci Rep 7:40761. https://doi.org/10.1038/srep40761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Fachini ER, Cruz G, Zhu Y, Ishikawa Y, Colucci JA, Cabrera CR (2001) Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc 148:C222–C226

    Article  CAS  Google Scholar 

  50. Saji VS, Lee CW (2012) Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 5(7):1146–1161

    Article  CAS  PubMed  Google Scholar 

  51. Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349

    Article  CAS  PubMed  Google Scholar 

  52. Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A (2015) Preparation and characterization of novel Ti0.7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B 174:455–470

    Article  CAS  Google Scholar 

  53. Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EG, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrog Energy 42:13741–13753

    Article  CAS  Google Scholar 

  54. Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Catal 121:141–160

    Article  CAS  Google Scholar 

  55. Alcaide F, Álvarez G, Tsiouvaras N, Pena MA, Fierro JLG, Martínez-Huerta MV (2011) Electrooxidation of H2/CO on carbon-supported PtRu-MoOx nanoparticles for polymer electrolyte fuel cells. Int J Hydrog Energy 36:14590–14598

    Article  CAS  Google Scholar 

  56. Fairley N (2006) “CasaXPS: spectrum processing software for XPS, AES and SIMS,” version 2.3.13. Casa Software Ltd, Cheshire. http://www.casaxps.com

  57. Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36(8):828–832

    Article  CAS  Google Scholar 

  58. Geiger S, Cherevko S, Mayrhofer KJJ (2015) Dissolution of platinum in presence of chloride traces. Electrochim Acta 179:24–31

    Article  CAS  Google Scholar 

  59. Shrestha BR, Tada E, Nishikata A (2014) Effect of chloride on platinum dissolution. Electrochim Acta 143:161–167

    Article  CAS  Google Scholar 

  60. Aguiar ACR, Olivi P (2010) Characterization and voltammetric behavior of PtyMozOx/C electrodes prepared by the thermal decomposition of polymeric precursors. J Power Sources 195:3485–3489

    Article  CAS  Google Scholar 

  61. Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem Commun 4:442–446

    Article  CAS  Google Scholar 

  62. Jaksic JM, Vracar Lj, Neophytides SG, Zafeiratos S, Papakonstantinou G, Krstajic NV, Jaksic MM (2005) Structural effects on kinetic properties for hydrogen electrode reactions and CO tolerance along Mo-Pt phase diagram. Surf Sci 598:156–173

    Article  CAS  Google Scholar 

  63. Lebedeva NP, Janssen GJM (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim Acta 51:29–40

    Article  CAS  Google Scholar 

  64. Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt-M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45

    CAS  Google Scholar 

  65. Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrog Energy 38:7811–7821

    Article  CAS  Google Scholar 

  66. Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161

    Article  CAS  Google Scholar 

  67. Schroeder T, Zegenhagen J, Magg N, Immaraporn B, Freund HJ (2004) Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM. Surf Sci 552:85–97

    Article  CAS  Google Scholar 

  68. Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114:4636–4645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research within Project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Financial support by the OTKA-project [Grant Number K112034 (István Bakos)] is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Borbáth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakos, I., Borbáth, I., Vass, Á. et al. Design and Investigation of Molybdenum Modified Platinum Surfaces for Modeling of CO Tolerant Electrocatalysts. Top Catal 61, 1385–1395 (2018). https://doi.org/10.1007/s11244-018-1035-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1035-x

Keywords

Navigation