Skip to main content
Log in

Effect of Mo incorporation on the electrocatalytic performance of Ti–Mo mixed oxide–carbon composite supported Pt electrocatalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ti(1−x)MoxO2–C carbon composite supported platinum electocatalysts with systematically varied Ti/Mo ratio were prepared by a multistep sol–gel-based synthesis method. The effect of the composition of the support material on the electrochemical behavior of the 20 wt% Pt electrocatalysts was investigated and the samples were also characterized by XRD, TEM, EDX and XPS techniques. The composite support ensures enhanced CO tolerance compared to the reference commercial 20 wt% Pt/C (Quintech) catalyst. Different Mo species were identified to have critical importance on the electrocatalytic performance both in hydrogen oxidation and CO tolerance. The unincorporated Mo species are not stable upon applying a wide cyclic polarization window and as a consequence they are removed gradually. Higher stability was obtained over Mo species incorporated into the rutile lattice. From the results, the Ti/Mo = 80/20 atomic ratio has been suggested as an optimal composition having the largest ratio of incorporated/non-incorporated Mo species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2:832–843

    Article  CAS  Google Scholar 

  2. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35

    CAS  Google Scholar 

  3. Subban C, Zhou Q, Leonard B, Ranjan C, Edvenson HM, DiSalvo FJ, Munie S, Hunting J (2010) Catalyst supports for polymer electrolyte fuel cells. Philos Trans R Soc A 368:3243–3253

    Article  CAS  Google Scholar 

  4. Huang SY, Ganesan P, Popov BN (2012) Electrocatalytic activity and stability of titania-supported platinum–palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catal 2:825–831

    Article  CAS  Google Scholar 

  5. Huang SY, Ganesan P, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899

    Article  CAS  Google Scholar 

  6. Huang SY, Ganesan P, Popov BN (2011) Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl Catal B Environ 102:71–77

    Article  CAS  Google Scholar 

  7. Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558

    Article  CAS  Google Scholar 

  8. Wang D, Subban CV, Wang H, Rus E, DiSalvo FJ, Abruña HD (2010) Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J Am Chem Soc 132:10218–10220

    Article  CAS  Google Scholar 

  9. Chevallier L, Bauer A, Cavaliere S, Hui R, Rozière J, Jones DJ (2012) Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes. ACS Appl Mater Interfaces 4:1752–1759

    Article  CAS  Google Scholar 

  10. Do TB, Cai M, Ruthkosky MS, Moylan TE (2010) Niobium-doped titanium oxide for fuel cell application. Electrochim Acta 55:8013–8017

    Article  CAS  Google Scholar 

  11. Kumar A, Ramani V (2013) Ta0.3Ti0.7O2 electrocatalyst supports exhibit exceptional electrochemical stability. J Electrochem Soc 160:F1207–F1215

    Article  CAS  Google Scholar 

  12. Zeng J, Lee JY (2007) Ruthenium-free, carbon-supported cobalt and tungsten containing binary & ternary Pt catalysts for the anodes of direct methanol fuel cells. Int J Hydrog Energy 32:4389–4396

    Article  CAS  Google Scholar 

  13. Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967

    Article  CAS  Google Scholar 

  14. Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998

    Article  CAS  Google Scholar 

  15. Yavuz E, Özdokur KV, Cakar I, Kocak S, Ertas FN (2015) Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim Acta 151:72–80

    Article  CAS  Google Scholar 

  16. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314

    Article  CAS  Google Scholar 

  17. Hou Z, Yi B, Yu H, Lin Z, Zhang H (2003) CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J Power Sources 123:116–125

    Article  CAS  Google Scholar 

  18. Wang Y, Fachini ER, Cruz G, Zhu Y, Ishikawa Y, Colucci JA, Cabrera CR (2001) Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc 148:C222–C226

    Article  CAS  Google Scholar 

  19. Santiago EI, Camara GA, Ticianelli EA (2003) CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method. Electrochim Acta 48:3527–3534

    Article  CAS  Google Scholar 

  20. Ho VTT, Pan CJ, Rick J, Su WN, Hwang BJ (2011) Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133:11716–11724

    Article  CAS  Google Scholar 

  21. Nguyen TT, Ho VTT, Pan CJ, Liu JY, Chou HL, Rick J, Su WN, Hwang BJ (2014) Synthesis of Ti0.7Mo0.3O2 supported- Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Appl Catal B Environ 154–155:183–189

    Article  Google Scholar 

  22. Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A (2015) Preparation and characterization of novel Ti0.7W0.3O2–C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B Environ 174:455–470

    Article  Google Scholar 

  23. Gubán D, Pászti Z, Borbáth I, Bakos I, Drotár E, Sajó IE, Tompos A (2016) Design and preparation of CO tolerant anode electrocatalysts for PEM fuel cells. Period Polytech Chem 60:29–39

    Article  Google Scholar 

  24. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J (2006) NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources 160:987–990

    Article  CAS  Google Scholar 

  25. Fairley N (2006) CasaXPS: spectrum processing software for XPS, AES and SIMS, Version 2.3.13. Casa Software Ltd, Cheshire. http://www.casaxps.com

  26. Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36(8):828–832

    Article  CAS  Google Scholar 

  27. Mohai M (2011) XPS MultiQuant: multi-model X-ray photoelectron spectroscopy quantification program, Version 7.00.92

  28. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, version 3.4. National Institute of Standards and Technology, Gaithersburg, MD

  29. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  30. Peters E, Mueller-Buschbaum H (1996) Ueber ein niedervalentes Titan-Wolframoxid: Ti0.54W0.46O2. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie 51:29–31. Crystallography Open Database: www.crystallography.net/2002761.html

  31. Atuchin VV, Kesler VG, Pervukhina NV, Zhang Z (2006) Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J Electron Spectrosc Relat Phenom 152:18–24

    Article  CAS  Google Scholar 

  32. Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161

    Article  CAS  Google Scholar 

  33. Schroeder T, Zegenhagen J, Magg N, Immaraporn B, Freund HJ (2004) Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM. Surf Sci 552:85–97

    Article  CAS  Google Scholar 

  34. Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114:4636–4645

    Article  CAS  Google Scholar 

  35. Mukerjee S, Urian RC (2002) Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy. Electrochim Acta 47:3219–3231

    Article  CAS  Google Scholar 

  36. Justin P, Rao GR (2011) Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int J Hydrog Energy 36:5875–5884

    Article  CAS  Google Scholar 

  37. Scibioh MA, Viswanathan B (2012) The status of catalysts in PEMFC technology. In: Guczi L, Erdőhelyi A (eds) Catalysis for alternative energy generation. Springer, Berlin, pp 329–368

    Chapter  Google Scholar 

  38. Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619

    Article  CAS  Google Scholar 

  39. Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692

    Article  CAS  Google Scholar 

  40. Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrog Energy 38:7811–7821

    Article  Google Scholar 

  41. Hu JE, Liu Z, Eichhorn BW, Jackson GS (2012) CO tolerance of nano-architectured Pt–Mo anode electrocatalysts for PEM fuel cells. Int J Hydrog Energy 37:11268–11275

    Article  CAS  Google Scholar 

  42. Esfahani RAM, Vankova SK, Monteverde Videla AHA, Specchia S (2017) Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl Catal B Environ 201:419–429

    Article  Google Scholar 

  43. Aryanpour M, Hoffmann R, DiSalvo FJ (2009) Tungsten-doped titanium dioxide in the rutile structure: theoretical considerations. Chem Mater 21:1627–1635

    Article  CAS  Google Scholar 

  44. Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654

    Article  CAS  Google Scholar 

  45. Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs Pt/C. Phys Chem Chem Phys 12:1182–1193

    Article  CAS  Google Scholar 

  46. Jusys Z, Kaiser J, Behm RJ (2001) Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst-a kinetic and mechanistic study by differential electrochemical mass spectrometry-. Phys Chem Chem Phys 3:4650–4660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Development Agency [Grant No. KTIA_AIK_12-1-2012-0014]. Financial support by the OTKA-project [Grant Nos. K100793 (Zoltán Pászti) and K112034 (István Bakos)] is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Borbáth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vass, Á., Borbáth, I., Pászti, Z. et al. Effect of Mo incorporation on the electrocatalytic performance of Ti–Mo mixed oxide–carbon composite supported Pt electrocatalysts. Reac Kinet Mech Cat 121, 141–160 (2017). https://doi.org/10.1007/s11144-017-1155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1155-5

Keywords

Navigation