Skip to main content
Log in

Characterization of Ceria-Based Nano-Oxide Catalysts by Raman Spectroscopy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ceria-based materials have drawn intense research focus due to variety of catalytic and energy related applications. Creation of oxygen vacancy defects imparts oxygen storage and release property (OSC) in the ceria, which facilitates the redox catalytic activity. Introduction of aliovalent dopant ions into the ceria nanocrystals enhances the OSC by generation of extrinsic defects. The current study describes synthesis and characterization of rare earth doped ceria-based mixed oxides. Characterization of the samples was carried out using XRD, BET surface area measurement, TEM, HRTEM, etc. The bulk defect features of the samples were studied employing visible Raman spectroscopy. F2g peak of the Raman spectra evidenced red shift and peak broadening, which could be attributed to change in lattice parameter, oxygen vacancy defects, and smaller crystallite size of the doped nanocrystals. Additional peak (D1) appeared due to the creation of oxygen vacancy defects. The ratio of intensity of D1 peak to F2g peak gave the defect concentration of the doped samples. O 2p and Ce 4f direct band gap energies of the samples were also evaluated. Decrease of band gap energy of the doped samples provided evidence of defect concentration enhancement. A correlation was found among the defect concentration and OSC of the prepared materials. Finally, CO oxidation reaction was performed with the doped materials and the activity was found to be in accordance with the enhancement of defect concentration and OSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sayle DC, Maicaneanu SA, Watson GW (2002) J Am Chem Soc 124:11429

    Article  CAS  Google Scholar 

  2. Li Y, Wang S, Su PC (2016) Sci Rep 6:22369

    Article  CAS  Google Scholar 

  3. Chen YJ, Xiao G, Wang TS, Zhang F, Ma Y, Gao P, Zhu CL, Zhang E, Xu Z, Li QH (2011) Sens Actuator B 156:867–874

    Article  CAS  Google Scholar 

  4. Nair MM, Abanades S (2016) Energ Fuel 30:6050–6058

    Article  CAS  Google Scholar 

  5. Zhou L, Li X, Yao Z, Chen Z, Hong M, Zhu R, Liang Y, Zhao J (2016) Sci Rep 6:23900

    Article  CAS  Google Scholar 

  6. Askrabic S, Dohcevic-Mitrovic ZD, Radovic M, Scepanovic M, Popovic ZV (2009) J Raman Spectrosc 40:650–655

    Article  CAS  Google Scholar 

  7. Grujic-Brojcin ZVPM, SCepanovic MJ, Dohcevic-Mitrovic ZD (2009) ActaPhysicaPolonica A 116:51–54

    CAS  Google Scholar 

  8. Taniguchi T, Watanabe T, Sugiyama N, Subramani AK, Wagata H, Matsushita N, Yoshimura M (2009) J Phys Chem C 113:19789–19793

    Article  CAS  Google Scholar 

  9. Lee Y, He G, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP (2011) J Am Chem Soc 133:12952–12955

    Article  CAS  Google Scholar 

  10. Banerji A, Grover V, Sathe V, Deb SK, Tyagi AK (2009) Solid State Commun 149:1689–1692

    Article  CAS  Google Scholar 

  11. Mukherjee D, Govinda Rao B, Reddy BM (2016) Appl Catal B 197:105–115

    Article  CAS  Google Scholar 

  12. Askrabic S, Dohcevic-Mitrovic Z, Kremenovic A, Lazarevic N, Kahlenberg V, Popovic ZV (2012) J Raman Spectros 43:76–81

    Article  CAS  Google Scholar 

  13. Filtschew A, Hofmann K, Hess C (2016) J Phys Chem C 120:6694–6703

    Article  CAS  Google Scholar 

  14. Pushkarev VV, Kovalchuk V, IdItri JL (2004) J Phys Chem B 108:5341–5348

    Article  CAS  Google Scholar 

  15. Wu Z, Li M, Howe J, Meyer HM, Overbury SH (2010) Langmuir 26:16595–16606

    Article  CAS  Google Scholar 

  16. Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) Langmuir 27:3872–3877

    Article  CAS  Google Scholar 

  17. Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Appl Catal B 162:122–132

    Article  CAS  Google Scholar 

  18. Vinodkumar T, Govinda Rao B, Reddy BM (2015) Catal Today 253:57–64

    Article  CAS  Google Scholar 

  19. Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Appl Catal B 144:900–908

    Article  CAS  Google Scholar 

  20. Concepcion P, Reddy BM, Knözinger H (1999) Phys Chem Chem Phys 1:3031–3037

    Article  CAS  Google Scholar 

  21. Artini C, Pani M, Carnasciali MM, Buscaglia MT, Plaisier JR, Costa GA (2015) Inorg Chem 54:4126–4137t;/bib>

    Article  CAS  Google Scholar 

  22. Ozawa M, Matuda K, Suzuki S (2000) J Alloys Compd 303:56–59

    Article  Google Scholar 

  23. Sudarsanam P, Amin MH, Reddy BM, Nafady A, Al Farhan KA, Bhargava SK (2015) ACS Appl Mater Interfaces 7:16525–16535

    Article  Google Scholar 

  24. Singh K, Kumar R, Chowdhury A (2016) J Mater Sci 51:4134–4141

    Article  CAS  Google Scholar 

  25. Swatsitang E, Phokha S, Hunpratub S, Maensiri S (2016) Phys B 485:14–20

    Article  CAS  Google Scholar 

  26. Wilkes MF, Hayden P, Bhattacharya AK (2003) J Catal 219:305–309

    Article  CAS  Google Scholar 

  27. Rangaswamy A, Sudarsanam P, Reddy BM (2016) J Rare Earths 33:1162–1169

    Article  Google Scholar 

  28. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307–319

    Article  CAS  Google Scholar 

  29. Kessler DA, Koplik J, Levine H (1988) Adv Phys 37:255–339

    Article  Google Scholar 

  30. Nelin CJ, Bagus PS, Ilton ES, Chambers SA, Kuhlenbeck H, Freund HJ (2010) Int J Quant Chem 110:2752–2764

    Article  CAS  Google Scholar 

  31. Govinda Rao B, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Catal Lett 145:1436–1445

    Article  CAS  Google Scholar 

  32. Gillot S, Dacquin JP, Dujardin C, Granger P (2016) Top Catal 59:987–995

    Article  CAS  Google Scholar 

  33. Taylor MN, Carley AF, Davies TE, Taylor SH (2009) Top Catal 52:1660–1668

    Article  CAS  Google Scholar 

  34. Kundu S, Sutradhar N, Thangamuthu R, Subramanian B, Panda AB, Jayachandran M (2012) J Nanopart Res 14:1040

    Article  Google Scholar 

  35. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Appl Catal B 101:101–108

    Article  CAS  Google Scholar 

  36. Li L, Chen F, Lu JQ, Luo MF (2011) J Phys Chem A 115:7972–7977

    Article  CAS  Google Scholar 

  37. Askrabic S, Kostic R, Dohcevic-Mitrovic Z, Popovic ZV (2007) J Phys Conf Ser 92:012–042

    Article  Google Scholar 

  38. Roodenko K, Goldthorpe IA, McIntyre PC, Chabal YJ (2010) Phys Rev B 82:115210

    Article  Google Scholar 

  39. Spanier JE, Robinson RD, Zheng F, Chan SW, Herman IP (2001) Phys Rev B 64:245407

    Article  Google Scholar 

  40. Nakajima A, Yoshihara A, Ishigame M (1994) Phys Rev B 50:13297–13307

    Article  CAS  Google Scholar 

  41. Sudarsanam P, Kuntaiah K, Reddy BM (2014) New J Chem 38:5991–6001

    Article  CAS  Google Scholar 

  42. Lohrenscheit M, Hess C (2016) ChemCatChem 28:523–526

    Article  Google Scholar 

  43. Kubelka P, Munk F (1931) Z Tech Phys 12:593–601

    Google Scholar 

  44. Keating PRL, Scanlon DO, Morgan BJ, Galea NM, Watson GW (2012) J Phys Chem C 116:2443–2452

    Article  CAS  Google Scholar 

  45. Guerrero-Ruiz A, Rodriguez-Ramos I (2001) Spill over and mobility of species on solid surfaces. Elsevier, Amsterdam

    Google Scholar 

  46. Rushton MJD, Chroneos A (2014) Sci Rep 4:6068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.M and B.G thank the United Grant Commission (UGC) and Council of Scientific and Industrial Research (CSIR), New Delhi for research fellowships. Financial support for this project was received from Department of Science and Technology, New Delhi, under SERB Scheme (SB/S1/PC-106/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Rao, B.G. & Reddy, B.M. Characterization of Ceria-Based Nano-Oxide Catalysts by Raman Spectroscopy. Top Catal 60, 1673–1681 (2017). https://doi.org/10.1007/s11244-017-0846-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0846-5

Keywords

Navigation