Skip to main content
Log in

Effects of Zeolite Type on Integrated Fischer–Tropsch Synthesis and Hydroprocessing

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A number of bifunctional composite cobalt-based catalysts were prepared with various types of molecular sieves in the H-form (zeolites ZSM-5, Y, Beta, and Mordernite, and silicoaluminophosphate SAPO-11) as an acid component. The catalytic performance of these catalysts was comparatively assessed in integrated Fischer-Tropsch synthesis of fuels. The catalysts were found to exhibit high activity and high C5+ selectivity at 2.0 MPa, 240–250°C, and a gas hourly space velocity (WHSV) of 1000 h–1. With the CO conversion reaching 80.9–93.7%, the productivity was in the range of 146.4 kg/(m3cat h). The study further revealed the effects of the crystalline and porous structures of the molecular sieves on the hydrocarbon and fractional compositions of the fuel products and on the selectivity towards branched hydrocarbons. It was shown that catalysts based on HZSM-5 and HBeta zeolites are preferable for high-performance and selective synthesis of fuels. In the presence of the HZSM-5-based catalyst, an effect atypical of Fischer–Tropsch synthesis was observed for the first time: an elevation of the process temperature leads to an enhancement of C5+ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wang, C., Fang, W., Wang, L., and Xiao, F.S., J. Energy Chem., 2021, vol. 54, pp. 429–433. https://doi.org/10.1016/j.jechem.2020.06.006

    Article  Google Scholar 

  2. Escorihuela, S., Toldra-Reig, F., Escolástico, S., Murciano, R., Martínez, A., Serra, J.M., J. Membr. Sci., 2021, vol. 619, p. 118516. https://doi.org/10.1016/j.memsci.2020.118516

    Article  CAS  Google Scholar 

  3. Sulima, S.I., Bakun, V.G., Chistyakova, N.S., Larina, M.V., Yakovenko, R.E., Savost’yanov, A.P., Petrol. Chem., 2021, vol. 61, no. 11, pp. 1178–1189. https://doi.org/10.1134/S0965544121110013

    Article  CAS  Google Scholar 

  4. Pedrolo, D.R.S., Ordomsky, V.V., Schwaab, M., Marcilio, N.R., and Khodakov, A.Y., J. Mater. Sci., 2021, vol. 56, pp. 18019–18030. https://doi.org/10.1007/s10853-021-06457-1

    Article  CAS  Google Scholar 

  5. Guo, L., Sun, S., Li, J., Gao, W., Zhao, H., Zhang, B., He, Y., Zhang, P., Yang, G., and Tsubaki, N., Fuel, 2021, vol. 306, p. 121684. https://doi.org/10.1016/j.fuel.2021.121684

    Article  CAS  Google Scholar 

  6. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol., 2014, vol. 4, pp. 893–907. https://doi.org/10.1039/C3CY01021J

    Article  CAS  Google Scholar 

  7. Chen, Y., Zhang, J., Jiang, X., Wei, L., Li, Z., and Liu, C., J. Taiwan Inst. Chem. Eng., 2020, vol. 116, pp. 153–159. https://doi.org/10.1016/j.jtice.2020.11.007

    Article  CAS  Google Scholar 

  8. Yakovenko, R.E., Zubkov, I.N., Bakun, V.G., and Savostyanov, A.P., Petrol. Chem., 2021, vol. 61, no. 4, pp. 516–526. https://doi.org/10.1134/S096554412105008X

    Article  CAS  Google Scholar 

  9. Khodakov, A.Y., Chu, W., and Fongarland, P., Chem. Rev., 2007, vol. 107, pp. 1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  10. Sartipi, S., Parashar, K., Valero-Romero, M.J., Santos, V.P., van der Linden, B., Makkee, M., Kapteijn, F., and Gascon, J., J. Catal., 2013, vol. 305, pp. 179–190. https://doi.org/10.1016/j.jcat.2013.05.012

    Article  CAS  Google Scholar 

  11. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Zubkov, I.N., Sulima, S.I., Soromotin, V.N., Mitchenko, S.A., Petrol. Chem., 2020, vol. 60, no. 1, pp. 81–91. https://doi.org/10.1134/S0965544120010120

    Article  Google Scholar 

  12. Eliseev, O.L., Savost’yanov, A.P., Sulima, S.I., and Lapidus, A.L., Mendeleev Commun., 2018, vol. 28, no. 4, pp. 345–351. https://doi.org/10.1016/j.mencom.2018.07.001

    Article  CAS  Google Scholar 

  13. Wang, Y., Gao, W., Kazumi, S., Fang, Y., Shi, L., Yoneyama, Y., Yang, G., and Tsubaki, N., Fuel, 2019, vol. 253, pp. 249–256. https://doi.org/10.1016/j.fuel.2019.05.022

    Article  CAS  Google Scholar 

  14. Weber, J.L., Martínez del Monte, D., Beerthuis, R., Dufour, J., Martos, C., de Jong, K.P., and de Jongh, P.E., Catal. Today, 2021, vol. 369, pp. 175–183. https://doi.org/10.1016/j.cattod.2020.05.016

    Article  CAS  Google Scholar 

  15. Xing, C., Li, M., Zhang, G., Noreen, A., Fu, Y., Yao, M., Lu, C., Gao, X., Yang, R., and Amoo, C.C., Fuel, 2021, vol. 285, pp. 119233. https://doi.org/10.1016/j.fuel.2020.119233

    Article  CAS  Google Scholar 

  16. Lu, P., Sun, J., Zhu, P., Abe, T., Yang, R., Taguchi, A., Vitidsant, T., and Tsubaki, N., J. Energy Chem., 2015, vol. 24, pp. 637–641. https://doi.org/10.1016/j.jechem.2015.08.004

    Article  Google Scholar 

  17. Martínez del Monte, D., Vizcaíno, A.J., Dufour, J., and Martos, C., Int. J. Energy Res., 2021, vol. 46, pp. 5280–5287. https://doi.org/10.1002/er.7460

    Article  CAS  Google Scholar 

  18. Sadek, R., Chalupka, K.A., Mierczynski, P., Rynkowski, J., Millot, Y., Valentin, L., Casale, S., and Dzwigaj, S., Catal. Today, 2020, vol. 354, pp. 109–122. https://doi.org/10.1016/j.cattod.2019.05.004

    Article  CAS  Google Scholar 

  19. Xing, C., Yang, G., Wu, M., Yang, R., Tan, L., Zhu, P., Wei, Q., Li, J., Mao, J., Yoneyama, Y., and Tsubaki, N., Fuel, 2015, vol. 148, pp. 48-57. https://doi.org/10.1016/j.fuel.2015.01.040

    Article  CAS  Google Scholar 

  20. Zhang, M., He, Z., Zhang, M., Wang, L., Wang, Q., Zhang, X., and Li, G., Fuel, 2022, vol. 316, p. 123166. https://doi.org/10.1016/j.fuel.2022.123166

    Article  CAS  Google Scholar 

  21. Park, G., Ahn, C., Park, S., Lee, Y., Kwak, G., and Kim, S.K., Appl. Catal. A: Gen., 2020, vol. 607, p. 117840. https://doi.org/10.1016/j.apcata.2020.117840

    Article  CAS  Google Scholar 

  22. Chalupka, K.A., Sadek, R., Szkudlarek, L., Mierczynski, P., Maniukiewicz, W., Rynkowski, J., Gurgul, J., Casale, S., Brouri, D., and Dzwigaj, S., Res. Chem. Intermed., 2021, vol. 47, pp. 397–418. https://doi.org/10.1007/s11164-020-04343-0

    Article  CAS  Google Scholar 

  23. Yao, M., Yao, N., Liu, B., Li, S., Xu, L., and Li, X., Catal. Sci. Technol., 2015, vol. 5, pp. 2821–2828. https://doi.org/10.1039/C5CY00017C

    Article  CAS  Google Scholar 

  24. Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., and Wang, Y., Ind. Eng. Chem. Res., 2016, vol. 55, pp. 13008–13019. https://doi.org/10.1021/acs.iecr.6b03810

    Article  CAS  Google Scholar 

  25. Sartipi, S., Makkee, M., Kapteijn, F., and Gascon, J., Catal. Sci. Technol., 2014, vol. 4, pp. 893–907. https://doi.org/10.1039/C3CY01021J

    Article  CAS  Google Scholar 

  26. Kriventseva, E.V., Gryaznov, K.O., Khat’kova, E.Yu., Sineva, L.V., and Mordkovich, V.Z., Vestn. MITKhT im. M.V. Lomonosova, 2013, vol. 8, no. 6, pp. 9–16.

    Google Scholar 

  27. Sineva, L.V., Asalieva, E.Y., and Mordkovich, V.Z., Russ. Chem. Rev., 2015, vol. 84, p. 1176. https://doi.org/10.1070/RCR4464

    Article  CAS  Google Scholar 

  28. Adeleke, A.A., Liu, X., Lu, X., Moyo, M., and Hildebrandt, D., Rev. Chem. Eng., 2020, vol. 36, no. 4, pp. 437–457. https://doi.org/10.1515/revce-2018-0012

    Article  CAS  Google Scholar 

  29. Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Saliev, A.N., Sulima, S.I., Zubkov, I.N., Nekroenko, S.V., and Mitchenko, S.A., Petrol. Chem., 2017, vol. 57, pp. 1186–1189. https://doi.org/10.1134/S0965544117060251

    Article  Google Scholar 

  30. Yakovenko, R.E., Zubkov, I.N., Bakun, V.G., Agliullin, M.R., Saliev, A.N., and Savost’yanov, A.P., Catal. Ind., 2021, vol. 13, pp. 230–238. https://doi.org/10.1134/S2070050421030120

    Article  Google Scholar 

  31. Yakovenko, R.E., Savost’yanov, A.P., Narochniy, G.B., Soromotin, V.N., Zubkov, I.N., Papeta, O.P., Mit-chenko, S.A., and Svetogorov, R.D., Catal. Sci. Technol., 2020, vol. 10, no. 22, pp. 7613–7629. https://doi.org/10.1039/D0CY00975J

    Article  CAS  Google Scholar 

  32. Sulima, S.I., Bakun, V.G., Yakovenko, R.E. Shabel’skaya, N.P., Saliev, A.N., Narochnyi, G.B., and Savost’yanov, A.P., Kinet. Catal., 2018, vol. 59, pp. 218–228 https://doi.org/10.1134/S0023158418020131

    Article  CAS  Google Scholar 

  33. Akhmedov, V.M. and Al-Khowaiter, S.H., Cat. Rev.-Sci. Eng., 2007, vol. 49, no. 1, pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  34. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD), 2014. https://www.icdd.com/

  35. Young, R.A., The Rietveld Method, Oxford University Press, 1995, p. 298.

  36. Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, pp. 85–95. https://doi.org/10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  37. Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, nos. 3–4, pp. 229–235. https://doi.org/10.1007/s10562-005-5861-7

    Article  CAS  Google Scholar 

  38. Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, no. 8, pp. 836–851. https://doi.org/10.1134/S096554412108003X

    Article  CAS  Google Scholar 

  39. Okoye-Chine, C.G., Moyo, M., and Hildebrandt, D., Fuel, 2021, vol. 296, pp. 120667. https://doi.org/10.1016/j.fuel.2021.120667

    Article  CAS  Google Scholar 

  40. van Steen, E., Sewell, G.S., Makhothe, R.A., Micklethwaite, C., Manstein, H., de Lange, M., and O’Connor, C.T., J. Catal., 1996, vol. 162, pp. 220–229. https://doi.org/10.1006/jcat.1996.0279

    Article  CAS  Google Scholar 

  41. Lualdi, M., Lögdberg, S., Regali, F., Boutonnet, M., and Järås, S., Top. Catal., 2011, vol. 54, pp. 977–985. https://doi.org/10.1007/s11244-011-9719-5

    Article  CAS  Google Scholar 

  42. Gnanamani, M.K., Shafer, W.D., Sparks, D.E., and Davis, B.H., Catal. Commun., 2011, vol. 12, pp. 936–939. https://doi.org/10.1016/j.catcom.2011.03.002

    Article  CAS  Google Scholar 

  43. Yang, J., Ma, W., Chen, D., Holmen, A., and Davis, B.H., Appl. Catal. A: Gen., 2014, vol. 470, pp. 250–260. https://doi.org/10.1016/j.apcata.2013.10.061

    Article  CAS  Google Scholar 

  44. Lögdberg, S., Yang, J., Lualdi, M., Walmsley, J.C., Järås, S., Boutonnet, M., Blekkan, E., Rytter, E., and Holmen, A., J. Catal., 2017, vol. 352, pp. 515–531.

    Article  Google Scholar 

  45. Dry, M.E., Catal. Today, 2002, vol. 71, nos. 3–4, pp. 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  46. Pavlov, M.L. Basimova, R.A., Alyab’ev, A.S., and Makeeva, E.A., Neftegaz. Delo, 2012, vol. 10, no. 1, pp. 169–173.

    Google Scholar 

  47. Jin, Y., Li, Y., Zhao, S., Lv, Z., Wang, Q., Liu, X., and Wang, L., Micropor. Mesopor. Mater., 2012, vol. 147, no. 1, pp. 259–266. https://doi.org/10.1016/j.micromeso.2011.06.023

    Article  CAS  Google Scholar 

  48. Cejka, J., Corma, A., and Zones, S., Zeolites and Catalysis: Synthesis Reactions and Applications; Weinheim: Wiley–VCH Verlag, GmbH & Co, 2010, p. 881.

  49. Khairullina, Z.R., Agliullin, M.R., Alekhina, I.E., and Kutepov, B.I., Vestn. Bashkir. Univ., 2020, vol. 25, pp. 495–505. https://doi.org/10.33184/bulletin-bsu-2020.3.6

    Article  Google Scholar 

  50. Weitkamp, J., Solid State Ionics, 2000, vol. 131, pp. 175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  CAS  Google Scholar 

  51. Martínez, A., Rollán, J., Arribas, M.A., Cerqueira, H.S., Costa, A.F., and Aguiar, E.F.S., J. Catal., 2007, vol. 249, pp. 162–173. https://doi.org/10.1016/j.jcat.2007.04.012

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with financial support from the Ministry of Sciences and Higher Education of the Russian Federation within the state assignment (project no. 2019-0990), using equipment of the Nanotechnology Center for Collective Use, South Russian State Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sulima.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Bakun, V.G., Agliullin, M.R. et al. Effects of Zeolite Type on Integrated Fischer–Tropsch Synthesis and Hydroprocessing. Pet. Chem. 62, 950–961 (2022). https://doi.org/10.1134/S0965544122070209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070209

Keywords:

Navigation