Skip to main content
Log in

Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure for 3D Structural Determination and Surface Fine Tuning

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This short review reports the three dimensional structure analysis of oxide-supported metal species and the origin of the metal-support interaction, using single crystal oxide surfaces and polarization-dependent total-reflection X-ray absorption fine structure (PTRF-XAFS) method. The PTRF-XAFS revealed that metal species interact strongly with oxygen anions of oxide surfaces and that surface pre-modification is a promising way to stabilize the surface monoatomic species of easily-aggregating Cu and Au and to prepare finely-tuned surface metal–organic species with regulated molecular structures and orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ertl G, Knoezinger H, Schuth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Baume M, Freund HJ (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127–198

    Article  Google Scholar 

  3. Street SC, Xu C, Goodman DW (1997) The physical and chemical properties of ultrathin oxide films. Annu Rev Phys Chem 48:43–68

    Article  CAS  Google Scholar 

  4. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  5. Wu MC, Estrada CA, Corneille JS, Goodman DW (1992) Model surface studies of metal oxides: adsorption of water and methanol on ultrathin MgO films on Mo (100). J Chem Phys 96:3892

    Article  CAS  Google Scholar 

  6. Corneille JS, He JW, Goodman DW (1994) XPS characterization of ultra-thin MgO films on a Mo (100) surface. Surf Sci 306:269–278

    Article  CAS  Google Scholar 

  7. Truong CM, Wu MC, Goodman DW (1992) Adsorption and reaction of formic acid on NiO (100) films on Mo (100): temperature programmed desorption and high resolution electron energy loss spectroscopy studies. J Chem Phys 97:9447

    Article  CAS  Google Scholar 

  8. Truong CM, Wu MC, Goodman DW (1993) Adsorption of formaldehyde on nickel oxide studied by thermal programmed desorption and high-resolution electron energy loss spectroscopy. J Am Chem Soc 115:3647–3653

    Article  CAS  Google Scholar 

  9. Wu M-C, Truong CM, Goodman DW (1992) Electron-energy-loss-spectroscopy studies of thermally generated defects in pure and lithium-doped MgO(100) films on Mo(100). Phys Rev B 46:12688–12694

    Article  CAS  Google Scholar 

  10. Purnell SK, Xu X, Goodman DW, Gates BC (1994) Adsorption and reaction of [Re2(CO)10] on ultrathin MgO films grown on a Mo(110) surface: characterization by IRAS and TPD. J Phys Chem 98:4076–4082

    Article  CAS  Google Scholar 

  11. Xu C, Lai X, Zajac GW, Goodman DW (1997) STM studies of TiO2(110) surface: structure and the nucleation growth of Pd. Phys Rev B 56:13464

    Article  CAS  Google Scholar 

  12. Gao F, Goodman DW (2012) Model catalysts: simulating the complexities of heterogeneous catalysts. Annu Rev Phys Chem 63:265–286

    Article  CAS  Google Scholar 

  13. Charlton G, Howes PB, Muryn CA, Raza H, Jones N, Taylor JSG, Norris C, McGrath R, Norman D, Turner TS, Thornton G (2000) Copper interface induced relaxation of TiO2(110)–1 × 1. Phys Rev B 61:16117

    Article  CAS  Google Scholar 

  14. Iwasawa Y (1996) X-ray absorption fine structure for catalysis and surface, vol 2. World Scientific, Singapore

    Book  Google Scholar 

  15. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  16. Valden M, Pak S, Lai X, Goodman DW (1998) Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal Lett 56:7–10

    Article  CAS  Google Scholar 

  17. Lai XF, St Clair TP, Goodman DW (1999) Oxygen-induced morphological changes of Ag nanoclusters supported on TiO2(110). Faraday Discuss 114:279–284

    Article  CAS  Google Scholar 

  18. Luo K, St Clair TP, Lai X, Goodman DW (2000) Silver growth on TiO2(110)(1 × 1) and (1 × 2). J Phys Chem B 104:3050–3057

    Article  CAS  Google Scholar 

  19. Yang ZX, Wu RQ, Goodman DW (2000) Structural and electronic properties of Au on TiO2(110). Phys Rev B 61:14066–14071

    Article  CAS  Google Scholar 

  20. Chusuei CC, Lai X, Davis KA, Bowers EK, Fackler JP, Goodman DW (2001) A nanoscale model catalyst preparation: solution deposition of phosphine-stabilized gold clusters onto a planar TiO2(110) support. Langmuir 17:4113–4117

    Article  CAS  Google Scholar 

  21. Kolmakov A, Goodman DW (2001) Scanning tunneling microscopy of gold clusters on TiO2(110): CO oxidation at elevated pressures. Surf Sci 490:L597–L601

    Article  CAS  Google Scholar 

  22. Kim YD, Stultz J, Wei T, Goodman DW (2002) Interaction of Ag with MgO(100). J Phys Chem B 106:6827–6830

    Article  CAS  Google Scholar 

  23. Santra AK, Min BK, Goodman DW (2002) Ag clusters on ultra-thin, ordered SiO2 films. Surf Sci 515:L475–L479

    Article  CAS  Google Scholar 

  24. Yang ZX, Wu RQ, Zhang QM, Goodman DW (2002) Adsorption of Au on an O-deficient MgO(001) surface. Phys Rev B 65:155407

    Article  Google Scholar 

  25. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255

    Article  CAS  Google Scholar 

  26. Goodman DW (2005) “Catalytically active Au on titania”: yet another example of a strong metal support interaction (SMSI)? Catal Lett 99:1–4

    Article  CAS  Google Scholar 

  27. Meier DC, Goodman DW (2004) The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. J Am Chem Soc 126:1892–1899

    Article  CAS  Google Scholar 

  28. Min BK, Wallace WT, Goodman DW (2004) Synthesis of a sinter-resistant, mixed-oxide support for an nanoclusters. J Phys Chem B 108:14609–14615

    Article  CAS  Google Scholar 

  29. Min BK, Wallace WT, Santra AK, Goodman DW (2004) Role of defects in the nucleation and growth of Au nanoclusters on SiO2 thin films. J Phys Chem B 108:16339–16343

    Article  CAS  Google Scholar 

  30. Ozensoy E, Min BK, Santra AK, Goodman DW (2004) CO dissociation at elevated pressures on supported Pd nanoclusters. J Phys Chem B 108:4351–4357

    Article  CAS  Google Scholar 

  31. Santra AK, Yang F, Goodman DW (2004) The growth of Ag–Au bimetallic nanoparticles on TiO2(110). Surf Sci 548:324–332

    Article  CAS  Google Scholar 

  32. Luo K, Lai X, Yi CW, Davis KA, Gath KK, Goodman DW (2005) The growth of silver on an ordered alumina surface. J Phys Chem B 109:4064–4068

    Article  CAS  Google Scholar 

  33. Chen M, Cai Y, Yan Z, Goodman DW (2006) On the origin of the unique properties of supported Au nanoparticles. J Am Chem Soc 128:6341–6346

    Article  CAS  Google Scholar 

  34. Min BK, Wallace WT, Goodman DW (2006) Support effects on the nucleation, growth, and morphology of gold nano-clusters. Surf Sci 600:L7–L11

    Article  CAS  Google Scholar 

  35. Chen MS, Luo K, Kumar D, Wallace WT, Yi CW, Gath KK, Goodman DW (2007) The structure of ordered Au films on TiO x . Surf Sci 601:632–637

    Article  CAS  Google Scholar 

  36. Gross E, Asscher M, Lundwall M, Goodman DW (2007) Gold nanoclusters deposited on SiO2 via water as buffer layer: CO-IRAS and TPD characterization. J Phys Chem C 111:16197–16201

    Article  CAS  Google Scholar 

  37. Han P, Goodman DW (2008) Controlling the size and distribution of Pd–Au nanoparticles on TiO2(110). J Phys Chem C 112:6390–6397

    Article  CAS  Google Scholar 

  38. Yang F, Trufan E, Adams RD, Goodman DW (2008) Structure of molecular-sized Ru3Sn3 clusters on a SiO2 film on Mo(112). J Phys Chem C 112:14233–14235

    Article  CAS  Google Scholar 

  39. McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) CO oxidation on Rh/SiO2/Mo(112) model catalysts at elevated pressures. J Phys Chem C 113:9688–9697

    Article  CAS  Google Scholar 

  40. Yang F, Chen MS, Goodman DW (2009) Sintering of Au particles supported on TiO2(110) during CO oxidation. J Phys Chem C 113:254–260

    Google Scholar 

  41. Gao F, Wang YL, Goodman DW (2010) Reaction kinetics and polarization- modulation infrared reflection absorption spectroscopy (PM-IRAS) investigation of CO oxidation over supported Pd–Au alloy catalysts. J Phys Chem C 114:4036–4043

    Article  CAS  Google Scholar 

  42. Lundwall MJ, McClure SM, Goodman DW (2010) Probing terrace and step sites on Pt nanoparticles using CO and ethylene. J Phys Chem C 114:7904–7912

    Article  CAS  Google Scholar 

  43. McClure SM, Lundwall MJ, Goodman DW (2011) Planar oxide supported rhodium nanoparticles as model catalysts. Proc Natl Acad Sci USA 108:931–936

    Article  CAS  Google Scholar 

  44. Lundwall MJ, McClure SM, Wang X, Wang ZJ, Chen MS, Goodman DW (2012) The structure-sensitivity of n-heptane dehydrocyclization on Pt/SiO2 model catalysts. J Phys Chem C 116:18155–18159

    Article  CAS  Google Scholar 

  45. Yan Z, Yao YX, Goodman DW (2012) Dehydrogenation of propane to propylene over supported model Ni–Au catalysts. Catal Lett 142:714–717

    Article  CAS  Google Scholar 

  46. Yuan Y, Kozlova AP, Asakura K, Wan H, Tsai K, Iwasawa Y (1997) Supported Au catalysts prepared from Au phosphine complexes and As-precipitated metal hyrdroxides:characterization and low-temperature CO oxidation. J Catal 170:191–199

    Article  CAS  Google Scholar 

  47. Shirai M, Iwasawa Y (1996) Total reflection fluorescence EXAFS. In: Iwasawa Y (ed) XAFS application to catalysis and surface. World Scientific, Singapore, pp 332–344

    Google Scholar 

  48. Stohr J (1988) SEXAFS: Everything you always wanted to know about SEXAFS but were afraid to ask. In: Koningsberger DC, Prins R (eds) X-ray absorption principles, applications, techniques of EXAFS, SEXAFS, and XANES. Chemical analysis, vol 92. Wiley, New York, pp 443–571

    Google Scholar 

  49. Stohr J (1992) NEXAFS spectroscopy. Springer series in surface sciences. Springer, Berlin

    Google Scholar 

  50. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359

    Article  Google Scholar 

  51. Koike Y, Ijima K, Chun WJ, Ashima H, Yamamoto T, Fujikawa K, Suzuki S, Iwasawa Y, Nomura M, Asakura K (2006) Structure of low coverage Ni atoms on the TiO2(110) surface polarization dependent total-reflection fluorescence EXAFS study. Chem Phys Lett 421:27–30

    Article  CAS  Google Scholar 

  52. Asakura K (2012) Polarization-dependent total reflection fluorescence extended X-ray absorption fine structure and its application to supported catalysis. Catalysis, vol 24. RSC Publishing, Cambridge

  53. Gota S, Gautiersoyer M, Douillard L, Duraud JP, Lefevre P (1996) The initial stages of the growth of copper on a (1 × 1) and a (\( \sqrt {31} \times \sqrt {31} \,R9^\circ \)) α-Al2O3(0001) surface. Surf Sci 352:1016–1021

    Google Scholar 

  54. Shirai M, Inoue T, Onishi H, Asakura K, Iwasawa Y (1994) Polarized total-reflection fluorescence EXAFS study of anisotropic structure analysis for Co oxides on α-Al2O3(0001) as model surfaces for active oxidation catalysis. J Catal 145:159–165

    Article  CAS  Google Scholar 

  55. Asakura K, Chun WJ, Shirai M, Tomishige K, Iwasawa Y (1997) In-situ polarization-dependent total-reflection fluorescence XAFS studies on the structure transformation of Pt clusters on α-Al2O3(0001). J Phys Chem B 101:5549–5556

    Article  CAS  Google Scholar 

  56. Asakura K, Ijima K (2001) Polarization-dependent EXAFS studies on the structures of Mo oxides dispersed on single crystals. J Electron Spectrosc Relat Phenom 119:185–192

    Article  CAS  Google Scholar 

  57. Ijima K, Koike Y, Chun W-J, Satio Y, Tanizawa Y, Shido T, Iwasawa Y, Nomura M, Asakura K (2004) A local structure of low coverage Ni species on the α-Al2O3(0001) surface—a polarization dependent XAFS studies. Chem Phys Lett 384:134–138

    Article  CAS  Google Scholar 

  58. Asakura K, Chun WJ, Iwasawa Y (1999) Anisotropic arrangement of Mo species highly dispersed on TiO2(110) surface demonstrated by polarization dependent total reflection fluorescence EXAFS. Jpn J Appl Phys Part-1 38-1:40–43

    Google Scholar 

  59. Asakura K (2010) Atomic aspects on surface chemical reaction. Catal Today 157:2–7

    Article  CAS  Google Scholar 

  60. Tanizawa Y, Chun WJ, Shido T, Asakura K, Iwasawa Y (2001) Three-dimensional analysis of the local structure of Cu on TiO2(110) by in situ polarization-dependent total-reflection fluorescence XAFS. J Synchron Rad 8:508–510

    Article  CAS  Google Scholar 

  61. Tanizawa Y, Shido T, Chun WJ, Asakura K, Nomura M, Iwasawa Y (2003) Three-dimensional structure analyses of Cu species dispersed on TiO2(110) surfaces studied by polarization-dependent total-reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). J Phys Chem B 107:12917–12929

    Article  CAS  Google Scholar 

  62. Uehara H, bin Hanaffi MH, Koike Y, Fujikawa K, Suzuki S, Ariga H, Takakusagi S, Chun WJ, Iwasawa Y, Asakura K (2013) Anisotropic growth of a nickel trimer formed on a highly-stepped TiO2(110) surface. Chem Phys Lett. doi:10.1016/j.cplett.2013.02.053

    Google Scholar 

  63. Fujikawa K, Suzuki S, Koike Y, Chun WJ, Asakura K (2006) Self-regulated Ni cluster formation on the TiO2(110) terrace studied using scanning tunneling microscopy. Surf Sci 600:L117–L121

    Article  CAS  Google Scholar 

  64. Koike Y, Fujikawa K, Suzuki S, Chun WJ, Ijima K, Nomura M, Iwasawa Y, Asakura K (2008) Origin of self-regulated cluster growth on the TiO2(110) surface studied using polarization-dependent total reflection fluorescence XAFS. J Phys Chem C 112:4667–4675

    Article  CAS  Google Scholar 

  65. Hutchings GJ, Edwards JK (2012) Chapter 6: application of gold nanoparticles in catalysis. In: Roy LJ, Wilcoxon JP (eds) Frontiers of nanoscience, vol 3. Elsevier, Amsterdam, pp 249–293

    Google Scholar 

  66. Haruta M (2004) Gold as anovel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27

    Article  CAS  Google Scholar 

  67. Tsukuda T (2012) Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters. Bull Chem Soc Jpn 85:151–168

    Article  CAS  Google Scholar 

  68. Takakusagi S, Miyazaki K, Nojima H, Wada T, Ariga H, Chun W-J, Nomura M, Asakura K, Iwasawa Y (2010) PTRF-XAFS analysis of structure of Au11 cluster on TiO2(110) Surface PF. Act Rep Part B 27:4386

    Google Scholar 

  69. Chun WJ, Miyazaki K, Watanabe N, Koike Y, Takakusagi S, Fujikawa K, Nomura M, Asakura K (2011) Angle resolved total reflection fluorescence XAFS and its application to Au clusters on TiO2(110) (1 × 1). J Ceram Soc Jpn 119:890–893

    Article  CAS  Google Scholar 

  70. Chun W-J, Miyazaki K, Watanabe N, Koike Y, Takakusagi S, Fujikawa K, Nomura M, Iwasawa Y, Asakura K (2013) Au clusters on TiO2(110) (1 × 1) and (1 × 2) surfaces examined by polarization-dependent total reflection fluorescence XAFS. J Phys Chem C 117:252–257

    Article  CAS  Google Scholar 

  71. Chun WJ, Koike Y, Ijima K, Fujikawa K, Ashima H, Nomura M, Iwasawa Y, Asakura K (2007) Preparation of atomically dispersed Cu species on a TiO2(110) surface premodified with an organic compound. Chem Phys Lett 433:345–349

    Article  CAS  Google Scholar 

  72. Takakusagi S, Nojima H, Ariga H, Uhehara H, Miyazaki K, Chun W-J, Iwasawa Y, Asakura K (2013) Fine tuning and orientation control of surface Cu complexes on TiO2(110) premodified with mercapto compounds: the effect of different mercapto group positions. Phys Chem Chem Phys 15:14080

    Google Scholar 

  73. Asakura K, Takakusagi S, Ariga H, Chun W-J, Suzuki S, Koike Y, Uehara H, Miyazaki K, Iwasawa Y (2013) Preparation and structure of a single Au atom on the TiO2(110) surface: control of the Au-metal oxide surface interaction. Faraday Discuss. doi:10.1039/C2FD20131C

    Google Scholar 

  74. Ulman A (1991) An introduction to ultrathin organic films from BL to SAM. Academic Press, San Diego

    Google Scholar 

  75. Biebuyck HA, Bain CD, Whitesides GM (1994) Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols. Langmuir 10:1825–1831

    Article  CAS  Google Scholar 

  76. Elfeninat F, Fredriksson C, Sacher E, Selmani A (1995) A theoretical investigation of the interactions between thiophene and vanadium, chromium, copper, and gold. J Chem Phys 102(15):6153

    Article  CAS  Google Scholar 

  77. Liu G, Rodriguez JA, Dvorak J, Hrbek J, Jirsak T (2002) Chemistry of sulfur-containing molecules on Au (111): thiophene, sulfur dioxide, and methanethiol adsorption. Surf Sci 505:295–307

    Article  CAS  Google Scholar 

  78. Chun WJ, Koike Y, Ashima H, Kinoshita K, Ijima K, Fujikawa K, Suzuki S, Nomura M, Iwasawa Y, Asakura K (2009) Atomically dispersed Cu species on a TiO2(110) surface precovered with acetic anhydride. Chem Phys Lett 470(1–3):99–102

    Article  CAS  Google Scholar 

  79. Ashima H, Chun W-J, Asakura K (2007) Room-temperature-adsorption behavior of acetic anhydride on a TiO2(110) surface. Surf Sci 601(8):1822–1830

    Article  CAS  Google Scholar 

  80. Kinoshita K, Suzuki S, Chun WJ, Takakusagi S, Asakura K (2009) Adsorption structure of acetic anhyhdride on a TiO2(110) surface observed by scanning tunneling microscopy. Surf Sci 603:552–557

    Article  CAS  Google Scholar 

  81. Tanaka I, Mizoguchi T (2009) First-principles calculations of x-ray absorption near edge structure and energy loss near edge structure: present and future. J Phys: Condens Matter 21:104201

    Google Scholar 

  82. Rehr JJ, Kas JJ, Vila FD, Prange MP, Jorissen K (2010) Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys 12:5503–5513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Asakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakusagi, S., Chun, WJ., Uehara, H. et al. Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure for 3D Structural Determination and Surface Fine Tuning. Top Catal 56, 1477–1487 (2013). https://doi.org/10.1007/s11244-013-0134-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0134-y

Keywords

Navigation