Skip to main content
Log in

Cellulase Immobilized Nanostructured Supports for Efficient Saccharification of Cellulosic Substrates

  • Review Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Functionalized nanomaterials are promising candidates for enzyme immobilization to develop efficient industrial biocatalysts with tailor-made catalytic properties. Cellulase, a saccharifying hydrolase, can be immobilized on various nanostructured supports using different types of binding chemistries. This review examines prior cellulase immobilization strategies and promising future techniques to integrate nanotechnology with biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altreuter DH, Clark DS (1999) Curr Opin Biotechnol 10:130–136

    CAS  Google Scholar 

  2. Marrs B, Delagrave S, Murphy D (1999) Curr Opin Microbiol 2:241–245

    CAS  Google Scholar 

  3. Organisation de coopération et de développement économiques. La biotechnologie au service de produits et de procédés industriels propres vers un développement industriel durable. Organisation de coopération et de développement économiques, Paris, 1998

  4. Kuchner O, Arnold FH (1997) Trends Biotechnol 15:523–530

    CAS  Google Scholar 

  5. Jaeger KE, Reetz MT (2000) Curr Opin Chem Biol 4:68–73

    CAS  Google Scholar 

  6. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258–268

    CAS  Google Scholar 

  7. Schoemaker HE, Mink D, Wubbolts MG (2003) Science 299:1694–1697

    CAS  Google Scholar 

  8. van Beilen JB, Li Z (2002) Curr Opin Biotechnol 13:338–344

    Google Scholar 

  9. Schulze B, Wubbolts MG (1999) Curr Opin Biotechnol 10:609–615

    CAS  Google Scholar 

  10. Organisation for Economic Co-operation and Development (2001) The application of biotechnology to industrial sustainability. OECD Publishing

  11. Holloway P, Knoke KL, Trevors JT, Lee H (1998) Biotechnol Bioeng 59:520–523

    CAS  Google Scholar 

  12. Igarashi S, Hirokawa T, Sode K (2004) Biomol Eng 21:81–89

    CAS  Google Scholar 

  13. Bornscheuer UT (2005) Trends and challenges in enzyme technology, In: Biotechnology for the future, pp 181–203

    CAS  Google Scholar 

  14. DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) J Am Chem Soc 125:11476–11477

    CAS  Google Scholar 

  15. Bornscheuer UT, Altenbuchner J, Meyer HH (1998) Biotechnol Bioeng 58:554–559

    CAS  Google Scholar 

  16. Hassler BL, Amundsen TJ, Zeikus JG, Lee I, Worden RM (2008) Biosens Bioelectron 23:1481–1487

    CAS  Google Scholar 

  17. Hassler BL, Kohli N, Zeikus JG, Lee I, Worden RM (2007) Langmuir 23:7127–7133

    CAS  Google Scholar 

  18. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Biotechnol Bioeng 36:275–287

    CAS  Google Scholar 

  19. Kohli N, Dvornic PR, Kaganove SN, Worden RM, Lee I (2004) Macromol Rapid Commun 25:935–941

    CAS  Google Scholar 

  20. Kohli N, Hassler BL, Parthasarathy L, Richardson RJ, Ofoli RY, Worden RM, Lee I (2006) Biomacromolecules 7:3327–3335

    CAS  Google Scholar 

  21. Kohli N, Lee I, Richardson RJ, Worden RM (2010) J Electroanal Chem 641:104–110

    CAS  Google Scholar 

  22. Kohli N, Srivastava D, Sun J, Richardson RJ, Lee I, Worden RM (2007) Anal Chem 79:5196–5203

    CAS  Google Scholar 

  23. Kohli N, Vaidya S, Ofoli RY, Worden RM, Lee I (2006) J Colloid Interface Sci 301:461–469

    CAS  Google Scholar 

  24. Kohli N, Worden RM, Lee I (2005) Chem Commun 316–318

  25. Kohli N, Worden RM, Lee I (2007) Macromol Biosci 7:789–797

    CAS  Google Scholar 

  26. Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ (2010) Small 6:537–544

    CAS  Google Scholar 

  27. Ferrari M (2005) Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  28. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) ACS Nano 2:1825–1832

    CAS  Google Scholar 

  29. Lu J, Drzal LT, Worden RM, Lee I (2007) Chem Mater 19:6240–6246

    CAS  Google Scholar 

  30. Ahn JS, Hammond PT, Rubner MF, Lee I (2005) Colloids and Surf A Physicochem Eng Asp 259:45–53

    CAS  Google Scholar 

  31. Ahn JS, Hendricks TR, Lee I (2007) Adv Funct Mater 17:3619–3625

    CAS  Google Scholar 

  32. Kidambi S, Chan C, Lee I (2008) Langmuir 24:224–230

    CAS  Google Scholar 

  33. Kidambi S, Chan C, Lee I (2004) J Am Chem Soc 126:4697–4703

    CAS  Google Scholar 

  34. Kidambi S, Lee I, Chan C (2004) J Am Chem Soc 126:16286–16287

    CAS  Google Scholar 

  35. Kidambi S, Lee I, Chan C (2008) Adv Funct Mater 18:294–301

    CAS  Google Scholar 

  36. Kidambi S, Sheng LF, Yarmush ML, Toner M, Lee I, Chan C (2007) Macromol Biosci 7:344–353

    CAS  Google Scholar 

  37. Kidambi S, Udpa N, Schroeder SA, Findlan R, Lee I, Chan C (2007) Tissue Eng 13:2105–2117

    CAS  Google Scholar 

  38. Mehrotra S, Hunley SC, Pawelec KM, Zhang LX, Lee I, Baek S, Chan C (2010) Langmuir 26:12794–12802

    CAS  Google Scholar 

  39. Mehrotra S, Lee I, Chan C (2009) Acta Biomater 5:1474–1488

    CAS  Google Scholar 

  40. Mehrotra S, Lee I, Liu C, Chan C (2011) Ind Eng Chem Res 8851–8858

  41. Mehrotra S, Lynam D, Maloney R, Pawelec KM, Tuszynski MH, Lee I, Chan C, Sakamoto J (2010) Adv Funct Mater 20:247–258

    CAS  Google Scholar 

  42. Lee I, Wool RP (2000) Thin Solid Films 379:94–100

    CAS  Google Scholar 

  43. Lee I, Wool RP (2000) Macromolecules 33:2680–2687

    CAS  Google Scholar 

  44. Lee I, Wool RP (2001) J Adhes 75:299–324

    CAS  Google Scholar 

  45. Lee I, Wool RP (2002) J Polym Sci B Polym Phys 40:2343–2353

    CAS  Google Scholar 

  46. Srivastava D, Hendricks TR, Lee I (2007) Nanotechnology 18:245305–245310

    Google Scholar 

  47. Srivastava D, Lee I (2006) Adv Mater 18:2471

    CAS  Google Scholar 

  48. Dandavate V, Keharia H, Madamwar D (2009) Process Biochem 44:349–352

    CAS  Google Scholar 

  49. Nagayama K, Yamasaki N, Imai M (2002) Biochem Eng J 12:231–236

    CAS  Google Scholar 

  50. Kim J, Grate JW, Wang P (2006) Chem Eng Sci 61:1017–1026

    CAS  Google Scholar 

  51. Lundqvist M, Sethson I, Jonsson B-H (2004) Langmuir 20:10639–10647

    CAS  Google Scholar 

  52. Jia HF, Zhu GY, Wang P (2003) Biotechnol Bioeng 84:406–414

    CAS  Google Scholar 

  53. Lynd LR (1996) Annu Rev Energy Env 21:403–465

    Google Scholar 

  54. Medve J, Karlsson J, Lee D, Tjerneld F (1998) Biotechnol Bioeng 59:621–634

    CAS  Google Scholar 

  55. Galbe M, Zacchi G (2002) Appl Microbiol Biotechnol 59:618–628

    CAS  Google Scholar 

  56. Tu MB, Chandra RP, Saddler JN (2007) Biotechnol Prog 23:398–406

    CAS  Google Scholar 

  57. Lee D, Yu AHC, Saddler JN (1995) Biotechnol Bioeng 45:328–336

    CAS  Google Scholar 

  58. Cao LQ, van Langen L, Sheldon RA (2003) Curr Opin Biotechnol 14:387–394

    CAS  Google Scholar 

  59. Sheldon RA (2007) Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  60. Himmel ME, Ruth MF, Wyman CE (1999) Curr Opin Biotechnol 10:358–364

    CAS  Google Scholar 

  61. Pringsheim H (1912) Hoppe-Seyler’s Z Physiol Chem 78:266–291

    CAS  Google Scholar 

  62. Reese ET, Siu RGH, Levinson HS (1950) J Bacteriol 59:485–497

    CAS  Google Scholar 

  63. Dashtban M, Schraft H, Qin WS (2009) Int J Biol Sci 5:578–595

    CAS  Google Scholar 

  64. Maki M, Leung KT, Qin WS (2009) Int J Biol Sci 5:500–516

    CAS  Google Scholar 

  65. Sinnott ML (1998) Biochem Soc Trans 26:160–164

    CAS  Google Scholar 

  66. Moreira N (2005) Sci News 168:218

    Google Scholar 

  67. Finkelstein M, Davison BH (2000) Twenty-first symposium on biotechnology for fuels and chemicals. Humana, Totowa, 2–6 May 1999

  68. Henrissat B (1994) Cellulose 1:169–196

    CAS  Google Scholar 

  69. Gilkes NR, Warren RAJ, Miller RC, Kilburn DG (1988) J Biol Chem 263:10401–10407

    CAS  Google Scholar 

  70. Mosier N, Hall P, Ladisch C, Ladisch M, Tsao G, Brainard A, Bungay H, Cao N, Cen P, Chen Z, Du J, Foody B, Gong C, Hall P, Ho N, Irwin D, Iyer P, Jeffries T, Ladisch C, Ladisch M, Lee Y, Mosier N, Mühlemann H, Sedlak M, Shi N, Tsao G, Tolan J, Torget R, Wilson D, Xia L (1999) Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins recent progress in bioconversion of lignocellulosics. Springer, Heidelberg, pp 23–40

    Google Scholar 

  71. Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Biochemistry 28:7241–7257

    CAS  Google Scholar 

  72. Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA (1990) Science 249:380–386

    CAS  Google Scholar 

  73. Schmuck M, Pilz I, Hayn M, Esterbauer H (1986) Biotechnol Lett 8:397–402

    CAS  Google Scholar 

  74. Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M, Esterbauer H (1988) Eur Biophys J Biophys Lett 15:339–342

    CAS  Google Scholar 

  75. Abuja PM, Pilz I, Claeyssens M, Tomme P (1988) Biochem Biophys Res Commun 156:180–185

    CAS  Google Scholar 

  76. Teeri T, Reinikainen T, Ruohonen L, Jones TA, Knowles JKC (1992) J Biotechnol 24:169–176

    CAS  Google Scholar 

  77. Knowles J, Lehtovaara P, Teeri T (1987) Trends Biotechnol 5:255–261

    CAS  Google Scholar 

  78. Wyman C (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

  79. Black GW, Rixon JE, Clarke JH, Hazlewood GP, Ferreira LMA, Bolam DN, Gilbert HJ (1997) J Biotechnol 57:59–69

    CAS  Google Scholar 

  80. Shen H, Schmuck M, Pilz I, Gilkes NR, Kilburn DG, Miller RC, Warren RAJ (1991) J Biol Chem 266:11335–11340

    CAS  Google Scholar 

  81. Srisodsuk M, Reinikainen T, Penttila M, Teeri TT (1993) J Biol Chem 268:20756–20761

    CAS  Google Scholar 

  82. Saloheimo M, NakariSetala T, Tenkanen M, Penttila M (1997) Eur J Biochem 249:584–591

    CAS  Google Scholar 

  83. Karlsson J, Medve J, Tjerneld F (1999) Appl Biochem Biotechnol 82:243–258

    CAS  Google Scholar 

  84. Fagerstam LG, Pettersson LG (1980) FEBS Lett 119:97–100

    Google Scholar 

  85. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbiol Mol Biol Rev 66:506

    CAS  Google Scholar 

  86. Tomme P, Warren RAJ, Gilkes NR, Poole RK (1995) Cellulose hydrolysis by bacteria and fungi. Advances in microbial physiology. Academic Press, London, pp 1–81

    Google Scholar 

  87. Woodward J (1991) Bioresour Technol 36:67–75

    CAS  Google Scholar 

  88. Dashtban M, Maki M, Leung KT, Mao CQ, Qin WS (2010) Crit Rev Biotechnol 30:302–309

    CAS  Google Scholar 

  89. Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Biotechnol Adv 28:308–324

    CAS  Google Scholar 

  90. Wilson DB (2009) Curr Opin Biotechnol 20:295–299

    CAS  Google Scholar 

  91. Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Beguin P, Wakarchuk WW, Kilburn DG, Miller RC, Warren RAJ, Withers SG (1992) J Biol Chem 267:12559–12561

    CAS  Google Scholar 

  92. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Curr Opin Struct Biol 8:548–557

    CAS  Google Scholar 

  93. Davies G, Henrissat B (1995) Structure 3:853–859

    CAS  Google Scholar 

  94. Serefoglou E, Litina K, Gournis D, Kalogeris E, Tzialla AA, Pavlidis IV, Stamatis H, Maccallini E, Lubomska M, Rudolf P (2008) Chem Mater 20:4106–4115

    CAS  Google Scholar 

  95. Yan JL, Pan GX, Li LQ, Quan GX, Ding C, Luo AL (2010) J Colloid Interface Sci 348:565–570

    CAS  Google Scholar 

  96. Koutsopoulos S, van der Oost J, Norde W (2005) Biophys J 88:467–474

    CAS  Google Scholar 

  97. Daoud FBO, Kaddour S, Sadoun T (2010) Colloids Surf B Biointerfaces 75:93–99

    CAS  Google Scholar 

  98. Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Chem Eng J 171:669–673

    CAS  Google Scholar 

  99. Gomez JM, Romero MD, Fernandez TM (2005) Catal Lett 101:275–278

    CAS  Google Scholar 

  100. Haupt B, Neumann T, Wittemann A, Ballauff M (2005) Biomacromolecules 6:948–955

    CAS  Google Scholar 

  101. Ho KM, Mao XP, Gu LQ, Li P (1042) Langmuir 24:11036–11042

    Google Scholar 

  102. Hung TC, Fu CC, Su CH, Chen JY, Wu WT, Lin YS (2011) Enzym Microb Technol 49:30–37

    CAS  Google Scholar 

  103. Wu LL, Yuan XY, Sheng J (2005) J Membr Sci 250:167–173

    CAS  Google Scholar 

  104. Afsahi B, Kazemi A, Kheirolomoom A, Nejati S (2007) Sci Iran 14:379–383

    CAS  Google Scholar 

  105. Gole A, Vyas S, Phadtare S, Lachke A, Sastry M (2002) Colloids Surf B Biointerfaces 25:129–138

    CAS  Google Scholar 

  106. Yoshimoto M, Li CZ, Matsunaga T, Nakagawa H, Fukunaga K, Nakao K (2006) Biotechnol Prog 22:459–464

    CAS  Google Scholar 

  107. Ortega N, Busto MD, Perez-Mateos M (1998) Bioresour Technol 64:105–111

    CAS  Google Scholar 

  108. Takimoto A, Shiomi T, Ino K, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K (2008) Microporous Mesoporous Mater 116:601–606

    CAS  Google Scholar 

  109. Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao ZP, Lu GQM (2010) J Phys Chem C 114:8353–8362

    CAS  Google Scholar 

  110. Chang RHY, Jang J, Wu KCW (2011) Green Chem 13:2844–2850

    CAS  Google Scholar 

  111. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Crit Rev Biotechnol 28:253–264

    CAS  Google Scholar 

  112. Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453–468

    CAS  Google Scholar 

  113. Sinegani AAS, Emtiazi G, Shariatmadari H (2005) J Colloid Interface Sci 290:39–44

    CAS  Google Scholar 

  114. Caruso F, Trau D, Mohwald H, Renneberg R (2000) Langmuir 16:1485–1488

    CAS  Google Scholar 

  115. Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Langmuir 13:3427–3433

    CAS  Google Scholar 

  116. Xia JL, Mattison K, Romano V, Dubin PL, Muhoberac BB (1997) Biopolymers 41:359–365

    CAS  Google Scholar 

  117. Makhongela H, Glowacka A, Agarkar V, Sewell B, Weber B, Cameron R, Cowan D, Burton S (2007) Appl Microbiol Biotechnol 75:801–811

    CAS  Google Scholar 

  118. Nakajima N, Ikada Y (1995) Bioconjug Chem 6:123–130

    CAS  Google Scholar 

  119. Walt DR, Agayn VI (1994) Trends Anal Chem 13:425–430

    CAS  Google Scholar 

  120. Li SF, Chen JP, Wu WT (2007) J Mol Catal B Enzym 47:117–124

    CAS  Google Scholar 

  121. Li SF, Wu WT (2009) Biochem Eng J 45:48–53

    CAS  Google Scholar 

  122. Yajima H, Hirose A, Ishii T, Ohsawa T, Endo R (1989) Biotechnol Bioeng 33:795–798

    CAS  Google Scholar 

  123. Kim Byoung C, Nair S, Kim Seong H, Sang Byoung I, Kim J, Gu Man B (2008) Enzyme-nanofiber composites for biocatalysis applications In: Biomolecular catalysis. American Chemical Society, pp 254–262

  124. Wilson R (2008) Chem Soc Rev 37:2028–2045

    CAS  Google Scholar 

  125. Jordan J, Kumar CSSR, Theegala C (2011) J Mol Catal B Enzym 68:139–146

    CAS  Google Scholar 

  126. Garcia A, Oh S, Engler CR (1989) Biotechnol Bioeng 33:321–326

    CAS  Google Scholar 

  127. Kennedy JF, Melo EHM, Jumel K (1990) Chem Eng Prog 86:81–89

    CAS  Google Scholar 

  128. Brash JL (1996) Interfacial phenomena and bioproducts. Dekker, New York

  129. Wang YJ, Caruso F (2005) Chem Mater 17:953–961

    CAS  Google Scholar 

  130. Bhat MK, Bhat S (1997) Biotechnol Adv 15:583–620

    CAS  Google Scholar 

  131. Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) Annu Rev Microbiol 58:521–554

    CAS  Google Scholar 

  132. Bayer EA, Morag E, Lamed R (1994) Trends Biotechnol 12:379–386

    CAS  Google Scholar 

  133. C.M.G.A. Fontes, H.J. Gilbert, Annual Review of Biochemistry, 79 655-681

  134. Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) Proc Nat Acad Sci USA 100:484–489

    CAS  Google Scholar 

  135. Shimon LJW, Pages S, Belaich A, Belaich JP, Bayer EA, Lamed R, Shoham Y, Frolow F (2000) Acta Crystallogr Sect D Biol Crystallogr 56:1560–1568

    CAS  Google Scholar 

  136. Gilbert HJ, Davies GJ, Henrissat B, Svensson BHE, Royal Society of Chemistry (GB) (2000) Recent advances in carbohydrate bioengineering [Texte imprimé]: Proceedings of the 3rd carbohydrate bioengineering meeting held at the University of Newcastle upon Tyne on 11–14 April 1999. Royal Society of Chemistry, London

  137. Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R, Shoham Y, Bayer EA (2001) J Biol Chem 276:9883–9888

    CAS  Google Scholar 

  138. Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA (2001) J Biol Chem 276:21257–21261

    CAS  Google Scholar 

  139. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP (2007) Appl Environ Microbiol 73:7138–7149

    CAS  Google Scholar 

  140. Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA (2006) Biocatal Biotransform 24:3–12

    CAS  Google Scholar 

  141. Kim DM, Umetsu M, Takai K, Matsuyama T, Ishida N, Takahashi H, Asano R, Kumagai I (2011) Small 7:656–664

    CAS  Google Scholar 

  142. Kim J, Jia HF, Wang P (2006) Biotechnol Adv 24:296–308

    CAS  Google Scholar 

  143. Wang P, Dai S, Waezsada SD, Tsao AY, Davison BH (2001) Biotechnol Bioeng 74:249–255

    CAS  Google Scholar 

Download references

Acknowledgments

The funding from the Michigan University Research Corridor and the Michigan Initiative for Innovation and Entrepreneurship and in part from the National Science Foundation (0609164, 0832730) to support this research is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilsoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, A.A., Lee, I. Cellulase Immobilized Nanostructured Supports for Efficient Saccharification of Cellulosic Substrates. Top Catal 55, 1231–1246 (2012). https://doi.org/10.1007/s11244-012-9891-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9891-2

Keywords

Navigation