Skip to main content
Log in

Simulating the Complexities of Heterogeneous Catalysis with Model Systems: Case studies of SiO2 Supported Pt-Group Metals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Model catalyst surfaces, consisting of vapor-deposited metal nanoparticles supported on a planar oxide support, can help to link reactivity studies on well-defined single crystal surfaces with those conducted on high-surface area supported catalysts. When coupled with near atmospheric pressure kinetic and spectroscopic techniques, these well-defined model catalyst surfaces represent a useful approach to combine the power of surface analytical techniques with reactivity studies under relevant reaction conditions. Here, we review recent results of our investigations characterizing the physical and catalytic properties of Pt/SiO2 and Rh/SiO2 model catalyst surfaces. As will be discussed, the model catalyst approach can help simulate the complexities of catalytic reactions on supported catalysts, helping to provide insights into the role of particle size, particle morphology, and surface adsorbates in dictating the observed structure-sensitivity (activity and selectivity) during reactions at near atmospheric pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodman DW (1996) J Phys Chem 100:13090–13102

    Article  CAS  Google Scholar 

  2. St. Clair TP, Goodman DW (2000) Top Catal 13:5–19

    Article  CAS  Google Scholar 

  3. Rupprechter G (2007) Catal Today 126:3

    Article  CAS  Google Scholar 

  4. Poppa H (1993) Catal Rev 35:359

    Article  CAS  Google Scholar 

  5. Henry CR (1998) Surf Sci Rep 31:231

    Article  CAS  Google Scholar 

  6. Rupprechter G, Weilach C (2008) J Phys Condens Matter 20:184019

    Google Scholar 

  7. Freund H-J (2008) Top Catal 48:137–144

    Article  CAS  Google Scholar 

  8. Altman EI, Gorte RJ (1986) Surf Sci 172:71–80

    Article  CAS  Google Scholar 

  9. Hensley DA, Kesmodel LL (1991) J Phys Chem 95:1363–1373

    Article  Google Scholar 

  10. Bäumer M, Freund H-J (1999) Prog Surf Sci 61:127

    Article  Google Scholar 

  11. Goodman DW (2003) J Catal 216:213–222

    Article  CAS  Google Scholar 

  12. Gates BC (2001) Top Catal 14:173–180

    Article  Google Scholar 

  13. Gates BC (1995) Chem Rev 95:511–522

    Article  CAS  Google Scholar 

  14. Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Chem Commun 46:5997–6015

    Article  CAS  Google Scholar 

  15. Liang AJ, Gates BC (2008) J Phys Chem C 112:18039–18049

    Article  CAS  Google Scholar 

  16. Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932–934

    Article  CAS  Google Scholar 

  17. Werdinius C, Österlund L, Kasemo B (2003) Langmuir 19:458–468

    Article  CAS  Google Scholar 

  18. Seidel YE, Lindström RW, Jusys Z, Gustavsson M, Hanarp P, Kasemo B, Minkow A, Fecht HJ, Behm RJ (2008) J Electrochem Soc 155:K50–K58

    Article  CAS  Google Scholar 

  19. Gunter PLJ, Niemantsverdriet JW, Ribeiro FH, Somorjai GA (1997) Catal Rev-Sci Eng 39:77–168

    Article  CAS  Google Scholar 

  20. Contreras AM, Grunes J, Yan X-M, Liddle A, Somorjai GA (2006) Top Catal 39:123–129

    Article  CAS  Google Scholar 

  21. Grunes J, Zhu J, Anderson EA, Somorjai GA (2002) J Phys Chem B 106:11463–11468

    Article  CAS  Google Scholar 

  22. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) J Am Chem Soc 130:5868–5869

    Article  CAS  Google Scholar 

  23. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027–2034

    Article  CAS  Google Scholar 

  24. Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10–19

    Article  CAS  Google Scholar 

  25. Abbet S, Ferrari AM, Giordani L, Pacchioni G, Häkkinen H, Landman U, Heiz U (2002) Surf Sci 514:249–255

    Article  CAS  Google Scholar 

  26. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Science 307:403–407

    Article  CAS  Google Scholar 

  27. Kunz S, Hartl K, Nesselberger M, Schweinberger FF, Kwon G, Hanzlik M, Mayrhofer KJJ, Heiz U, Arenz M (2010) Phys Chem Chem Phys 12:10288–10291

    Article  CAS  Google Scholar 

  28. Bhirud VA, Ehresmann JO, Kletnieks PW, Haw JF, Gates BC (2006) Langmuir 22:490–496

    Article  CAS  Google Scholar 

  29. Ogino I, Gates BC (2010) J Phys Chem C 114:8405–8413

    Article  CAS  Google Scholar 

  30. Argo AM, Gates BC (2003) J Phys Chem B 107:5519–5528

    Article  CAS  Google Scholar 

  31. Borasio M, de la Fuente ORodríguez, Rupprechter G, Freund H-J (2005) J Phys Chem B 105:17791–17794

    Article  Google Scholar 

  32. Hayek K, Goller H, Penner S, Rupprechter G, Zimmermann C (2004) Catal Lett 92:1

    Article  CAS  Google Scholar 

  33. Zafiris GS, Gorte RJ (1993) J Catal 140:418

    Article  CAS  Google Scholar 

  34. Altman EI, Gorte RJ (1988) J Catal 110:191

    Article  CAS  Google Scholar 

  35. Gao F, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) J Phys Chem C 113:182–192

    Article  CAS  Google Scholar 

  36. McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) J Phys Chem C 113:9688–9697

    Article  CAS  Google Scholar 

  37. McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) J Phys Condens Matter 21:474223

    Google Scholar 

  38. McClure SM, Lundwall M, Zhou Z, Yang F, Goodman DW (2009) Catal Lett 133:298–306

    Article  CAS  Google Scholar 

  39. Lundwall M, McClure SM, Goodman DW (2010) J Phys Chem C 114:7904–7912

    Article  CAS  Google Scholar 

  40. McClure SM, Lundwall MJ, Goodman DW (submitted) Proc Nat Acad Sci

  41. Szanyi J, Goodman DW (1993) Rev Sci Ins 64:2350

    Article  CAS  Google Scholar 

  42. Chen MS, Santra AK, Goodman DW (2004) Phys Rev B 69:155404

    Google Scholar 

  43. Xu X, Goodman DW (1992) Appl Phys Lett 61(7):774

    Article  CAS  Google Scholar 

  44. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Surf Sci 601:5326

    Article  CAS  Google Scholar 

  45. Blyholder G (1964) J Phys Chem 68:2772

    Article  CAS  Google Scholar 

  46. Linke R, Curulla D, Hopstaken MJP, Niemantsverdriet JW (2001) J Chem Phys 115:8209

    Article  CAS  Google Scholar 

  47. Fiorin V, McCoustra MRS, Chesters MA (2003) J Phys Chem B 107(29):7058

    Article  CAS  Google Scholar 

  48. Nakamura I, Kobayashi Y, Hamada H, Fujitani T (2006) Surf Sci 600:3235

    Article  CAS  Google Scholar 

  49. Evans J, Hayden B, Mosselmans F, Murray A (1992) Surf Sci Lett 279:L159

    Article  CAS  Google Scholar 

  50. Frank M, Kühnemuth R, Bäumer M, Freund H-J (2000) Surf Sci 454:968

    Article  Google Scholar 

  51. Frank M, Kühnemuth R, Bäumer M, Freund H-J (1999) Surf Sci 427:288

    Article  Google Scholar 

  52. Trautmann S, Baerns M (1994) J Catal 150:335

    Article  CAS  Google Scholar 

  53. Cavanagh RR, Yates JT Jr (1981) J Chem Phys 74:4150

    Article  CAS  Google Scholar 

  54. Vattuone L, Savio L, Rocca M (2008) Surf Sci Rep 63:101–168

    Article  CAS  Google Scholar 

  55. Van Hardeveld R, Hartog F (1969) Surf Sci 15:189–230

    Article  Google Scholar 

  56. Kalakkad D, Anderson SL, Logan AD, Peña J, Braunschweig EJ, Peden CHF, Datye AK (1993) J Phys Chem 97:1437–1444

    Article  CAS  Google Scholar 

  57. Bond GC, Calhoun J, Hooper AD (1996) J Chem Soc Farad Trans 92:5117–5128

    Article  CAS  Google Scholar 

  58. Engstrom JR, Goodman DW, Weinberg WH (1986) J Am Chem Soc 108:4653–4655

    Article  CAS  Google Scholar 

  59. Engstrom JR, Goodman DW, Weinberg WH (1988) J Am Chem Soc 110:8305–8319

    Article  CAS  Google Scholar 

  60. Besocke K, Krahl-Urban B, Wagner H (1977) Surf Sci 68:39–46

    Article  CAS  Google Scholar 

  61. Hammer B, Nielsen OH, Norskov JK (1997) Catal Lett 46:31–35

    Article  CAS  Google Scholar 

  62. Mukerji RJ, Bolina AS, Bown WA (2003) Surf Sci 527:198–208

    Article  CAS  Google Scholar 

  63. McCabe RW, Schmidt LD (1977) Surf Sci 66:101–124

    Article  CAS  Google Scholar 

  64. Hayden BE, Kretzschmar K, Bradshaw AM, Greenler RG (1985) Surf Sci 149:394–406

    Article  CAS  Google Scholar 

  65. Goodman DW, Peden CHF (1986) J Phys Chem 90:4839

    Article  CAS  Google Scholar 

  66. Peden CHF, Goodman DW, Blair DS, Berlowitz PJ, Fisher GB, Oh SH (1988) J Phys Chem 92:1563

    Article  CAS  Google Scholar 

  67. Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) J Catal 100:360

    Article  CAS  Google Scholar 

  68. Kiss JT, Gonzalez RD (1984) J Phys Chem 88:898

    Article  CAS  Google Scholar 

  69. Cant NW, Hicks PC, Lennon BS (1978) J Catal 54:372

    Article  CAS  Google Scholar 

  70. Berlowitz PJ, Peden CHF, Goodman DW (1988) J Phys Chem 92:5213

    Article  CAS  Google Scholar 

  71. Oh SH, Eickel CC (1991) J Catal 128:526

    Article  CAS  Google Scholar 

  72. McCarthy E, Zahradnik J, Kuczynski GC, Carberry JJ (1975) J Catal 39:29

    Article  CAS  Google Scholar 

  73. Akabuiro EC, Verykios XE, Lesnick L (1985) Appl Catal 14:215

    Article  Google Scholar 

  74. Gracia FJ, Bollmann L, Wolf EE, Miller JT, Kropf AJ (2003) J Catal 220:382

    Article  CAS  Google Scholar 

  75. Atalik B, Under D (2006) J Catal 241:268

    Article  CAS  Google Scholar 

  76. Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) Catal Lett 129:1

    Article  CAS  Google Scholar 

  77. Van’t Blik HFJ, Van Zon JBAD, Huizinga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:2264–2267

    Article  Google Scholar 

  78. Basu P, Panatyotov D, Yates JT Jr (1988) J Am Chem Soc 110:2074–2081

    Article  CAS  Google Scholar 

  79. Solymosi F, Pásztor M (1986) J Phys Chem 90:5312–5317

    Article  CAS  Google Scholar 

  80. Berkó A, Solymosi F (1999) J Catal 183:91–101

    Article  Google Scholar 

  81. Solymosi F, Bánsági T (1993) J Phys Chem 97:10133–10138

    Article  CAS  Google Scholar 

  82. McQuire MW, McQuire GW, Rochester CH (1992) J Chem Soc Faraday Trans 88:1203–1209

    Article  CAS  Google Scholar 

  83. Zaki MI, Kunzmann G, Gates BC, Knözinger H (1986) J Phys Chem 91:1486–1493

    Article  Google Scholar 

  84. Yang AC, Garland CW (1957) J Phys Chem 61:1504–1512

    Article  Google Scholar 

  85. Henderson MA, Worley SD (1985) J Phys Chem 89:1417–1423

    Article  CAS  Google Scholar 

  86. Worley SD, Mattson GA, Caudill R (1983) J Phys Chem 87:1671–1673

    Article  CAS  Google Scholar 

  87. Solymosi F, Erdöhelyi A, Bánsági T (1981) J Catal 68:371–382

    Article  CAS  Google Scholar 

  88. Kamer PCJ, H. Reek JN, Piet WNM, Van Leeuwen (2002) In: Van Leeuwen, Piet WNM, Claver C (eds) Rhodium catalyzed hydroformylation. Kluwer Academic Publishers, New York, pp 35–59

  89. Balakos MW, Chuang SSC (1995) J Catal 151:253–265

    Article  CAS  Google Scholar 

  90. Chuang SSC, Stevens RW Jr, Khatri R (2005) Top Catal 32:225–232

    Article  CAS  Google Scholar 

  91. Chuang SSC, Pien SI (1992) J Catal 135:618–634

    Article  CAS  Google Scholar 

  92. Chuang SSC, Krishnamurthy R, Tan C-D (1995) Colloids Surf A Physicochem Eng Aspects 105:35–46

    Article  CAS  Google Scholar 

  93. Hanaoka T, Arakawa H, Matsuzaki T, Sugi Y, Kanno K, Abe Y (2000) Catal Today 58:271–280

    Article  CAS  Google Scholar 

  94. Huang L, Xu Y, Guo W, Liu A, Li D, Guo X (1995) Catal Lett 32:61–81

    Article  CAS  Google Scholar 

  95. Sachtler WMH, Ichikawa M (1986) J Phys Chem 90:4752–4758

    Article  CAS  Google Scholar 

  96. Fukushima T, Ichikawa M, Matsushita S, Tanaka K, Saito T (1985) J Chem Soc Chem Commun 1209–1211

  97. Konishi Y, Ichikawa M, Sachtler WMH (1987) J Phys Chem 91:6286–6291

    Article  CAS  Google Scholar 

  98. Williams KJ, Boffa AB, Lahtinen J, Salmeron M, Bell AT, Somorjai GA (1990) Catal Lett 5:385–394

    Article  CAS  Google Scholar 

  99. Williams KJ, Boffa AB, Salmeron M, Bell AT, Somorjai GA (1991) Catal Lett 11:77–88

    Article  CAS  Google Scholar 

  100. Yates JT Jr, Duncan TM, Worley SD, Vaughn RW (1979) J Chem Phys 70:1219–1224

    Article  CAS  Google Scholar 

  101. Solymosi M, Pásztor M (1987) J Catal 104:312–322

    Article  CAS  Google Scholar 

  102. Zeelie TA, Root A, Krause AOI (2005) Appl Catal A Gen 285:96–109

    Article  CAS  Google Scholar 

  103. Yan L, Ding YJ, Lin LW, Zhu HJ, Yin HM, Li XM, Lu Y (2009) J Mol Catal A Chem 300:116–120

    Article  CAS  Google Scholar 

  104. Yan L, Ding YJ, Zhu HJ, Xiong JM, Wang T, Pan ZD, Lin LW (2005) J Mol Catal A Chem 234:1–7

    Article  CAS  Google Scholar 

  105. Zhu H, Ding Y, Yan L, Lu Y, Li C, Bao X, Lin L (2004) Chem Lett 33:630–631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support for this work by the Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClure, S.M., Goodman, D.W. Simulating the Complexities of Heterogeneous Catalysis with Model Systems: Case studies of SiO2 Supported Pt-Group Metals. Top Catal 54, 349–362 (2011). https://doi.org/10.1007/s11244-011-9671-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9671-4

Keywords

Navigation