Skip to main content
Log in

Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Strong Lewis acid SnTf-MCM-41 and SnTf-UVM-7 catalysts with unimodal and bimodal pore systems were prepared in a two-step synthesis in which the triflic acid (Tf) was incorporated into previously synthesized mesoporous tin-containing silicas. The Sn incorporation inside the pore walls was carried out through the Atrane method. The SnTf-UVM-7 catalysts were prepared by aggregating nanometric mesoporous particles defining a hierarchic textural-type additional pore system. Catalysts with different Si/Sn ratios in the range 21.8–50.8 for SnTf-MCM-41 and 18.4 for SnTf-UVM-7 were found to be efficient catalysts for the acylation of aromatics and heteroaromatics. Under microwave irradiation the reaction was possible even with acetic acid. The selectivity to the desired product (o-hydroxyacetophenone for phenol) or the unfavored three-substituted five ring heterocycles was dramatically increased under these conditions. The process is green, environmentally safe, and heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Szmant H (1989) Organic building blocks of the industrial industry. Wiley, New York

    Google Scholar 

  2. Kroschwitz JI, Howe-Grant M (eds) (1995) Encyclopedia of chemical technology, 4th edn. Wiley, New York

    Google Scholar 

  3. Bauer K, Garbe D (1985) Common fragrance and flavor materials. VCH Publishers, Weinheim

    Google Scholar 

  4. Cadamuro S, Degani I, Dughera S, Fochi R, Gatti A, Piscopo L (1993) J Chem Soc Perkin Trans I 273

  5. Oda K, Hiratsuka R, Machida M (1996) Heterocycles 43:463

    Article  CAS  Google Scholar 

  6. Barrett AGM, Braddock DC, Catterick D, Chadwick D, Henschke JP, McKinnell RM (2000) Synlett 847

  7. Fürstner A, Voigtländer D, Schrader W, Giebel D, Reetz MT (2001) Org Lett 3:417

    Article  Google Scholar 

  8. Hohhman JW, Dai D, Martin BR, Compton DR (1994) Biomed Chem Lett 4:563

    Article  Google Scholar 

  9. Schloemer GC, Greenhouse R, Muchowski JM (1994) J Org Chem 59:5230

    Article  CAS  Google Scholar 

  10. Kim MY, Lim GJ, Lim JI, Kim DS, Kim IY, Yang JS (1997) Heterocycles 45:2041

    Article  CAS  Google Scholar 

  11. Bradley DA, Godfrey AG, Schmid CR (1999) Tetrahedron Lett 40:5155

    Article  CAS  Google Scholar 

  12. Komoto I, Matsuo J-I, Kobayashi S (2002) Top Catal 19:43

    Article  CAS  Google Scholar 

  13. Mukaiyama T, Nagaoka H, Ohshima M, Murakami M (1986) Chem Lett 15:165

    Article  Google Scholar 

  14. Harada T, Ohno T, Kobayashi S, Mukaiyama T (1991) Synthesis 1216

  15. Mukaiyama T, Suzuki K, Han JS, Kobayashi S (1992) Chem Lett 21:435

    Article  Google Scholar 

  16. Mikami K, Kotera O, Motoyama Y, Sakaguchi H, Maruta M (1996) Synlett 171

  17. Effenberger F, Eberhard JK, Maier AH (1996) J Am Chem Soc 118:12572

    Article  CAS  Google Scholar 

  18. Nishikido J, Nakajima H, Saeki T, Ishii A, Mikami K (1998) Synlett 1347

  19. Kawada A, Mitamura S, Kobayashi S (1993) J Chem Soc Chem Commun 1157

  20. Kawada A, Mitamura S, Kobayashi S (1994) Synlett 545

  21. Kawada A, Mitamura S, Kobayashi S (1996) Chem Commun 183

  22. Desmurs JR, Labrouillère M, Roux CL, Gaspard H, Laporterie A, Dubac J (1997) Tetrahedron Lett 38:8871

    Article  CAS  Google Scholar 

  23. Répichet S, Roux CL, Dubac J, Desmurs J-R (1998) Eur J Org Chem 2743

  24. Hachiya I, Moriwaki M, Kobayashi S (1995) Tetrahedron Lett 36:409

    Article  CAS  Google Scholar 

  25. Kobayashi S, Iwamoto S (1998) Tetrahedron Lett 39:4697

    Article  CAS  Google Scholar 

  26. Matsuo J, Odashima K, Kobayashi S (2000) Synlett 403

  27. Kobayashi S, Komoto I, Matsuo J (2001) Adv Synth Catal 343:71

    Article  CAS  Google Scholar 

  28. Sheldon RA (2000) Pure Appl Chem 72:1233

    Article  CAS  Google Scholar 

  29. Lancaster M (2002) Green chemistry: an introductory text. Royal Society Chemistry Education, Cambridge

    Google Scholar 

  30. Bose AK, Banik BK, Lavlinskaia N, Jayaraman M, Manhas MS (1997) Chemtech 27:18

    CAS  Google Scholar 

  31. Loupy A (2002) Microwaves in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  32. Lidstrom P, Tierney JP (2005) Microwave assisted organic synthesis. Blackwell, Oxford

    Google Scholar 

  33. Kappe CO (2004) Angew Chem Int Ed 43:6250

    Article  CAS  Google Scholar 

  34. Bogdal D, Lukasiewicz M, Pielichowski J (2004) Green Chem 6:110

    Article  CAS  Google Scholar 

  35. Loones KTJ, Maes BUW, Rombouts G, Hostyn S, Diels G (2005) Tetrahedron 61:10338

    Article  CAS  Google Scholar 

  36. Burczyk A, Loupy A, Bogdal D, Petit A (2005) Tetrahedron 61:179

    Article  CAS  Google Scholar 

  37. Coman SM, Pop G, Stere C, Parvulescu VI, Haskouri JEl, Beltran D, Amoros P (2007) J Catal 251:388

    Article  CAS  Google Scholar 

  38. Cabrera S, Haskouri JEl, Guillem C, Latorre J, Beltrán A, Beltrán D, Marcos MD, Amorós P (2000) Solid State Sci 2:405

    Article  CAS  Google Scholar 

  39. Samanta S, Mal NK, Manna A, Bhaumik A (2004) Appl Catal A Gen 273:157

    Article  CAS  Google Scholar 

  40. Liu ZC, Chen HR, Huang WM, Gu JL, Bu WB, Hua ZL, Shi JL (2006) Microporous Mesoporous Mater 89:270

    Article  CAS  Google Scholar 

  41. Wagner CD, Moulder JF, Davis LE, Riggs WM (1993) Handbook of X-ray photoelectron spectroscopy. Perking–Elmer Corporation, Physical Electronics Division, USA

    Google Scholar 

  42. Briggs D, Seah MP (1990) Practical surface analysis, vol. 1, Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley/Salle and Sauerländer, Chichester, New York, Brisbane, Toronto, Singapore/Aarau, Frankfurt/M, Salzburg

    Google Scholar 

  43. Fromentin E, Coustard JM, Guisnet M (2000) J Mol Catal A: Chem 159:377

    Article  CAS  Google Scholar 

  44. Asthagiri A, Sholl DS (2004) J Mol Catal A: Chem 216:233

    Article  CAS  Google Scholar 

  45. Ertl G, Knozinger H, Schuth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, vol 7. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  46. Krishna Mohan KVV, Narender N, Kulkarni SJ (2006) Green Chem 8:368

    Article  Google Scholar 

  47. Perreux L, Loupy A (2001) Tetrahedron 57:9199

    Article  CAS  Google Scholar 

  48. De la Hoz A, Diaz-Ortiz A, Moreno A (2005) Chem Soc Rev 34:167

    Google Scholar 

  49. Zhang X, Hayward DO, Mingos DMP (2003) Catal Lett 88:33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the MEC (CTQ2006-15456-C04-03 grants) for support. JEH thanks the MEC for a Ramón and Cajal contract. We also thank the CNCSIS (Grant 44GR/2008, COD CNCSIS 1071) for the support. Authors are also indebted to Christopher Ioan for the constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile I. Parvulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candu, N., Coman, S., Parvulescu, V.I. et al. Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals. Top Catal 52, 571–578 (2009). https://doi.org/10.1007/s11244-009-9188-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9188-2

Keywords

Navigation