Skip to main content
Log in

Phase-Change Transpiration Cooling in a Porous Medium: Determination of the Liquid/Two-Phase/Vapor Interfaces as a Problem of Eigenvalues

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this work, we carry out a theoretical analysis of the transpiration cooling with a liquid coolant phase change in a porous medium. The evaporation of the liquid inside the porous medium causes the appearance of three regions: a liquid region, a two-phase region and a vapor region. This kind of physical problem has been widely studied in the specialized literature and the main contributions are based on the separated phase model or by using the two-phase mixture model. Here, we propose a new model that permits to numerically determine the thickness of the three regions that are formed inside of the porous medium. To analyze this phenomenon, the governing equations were appropriately nondimensionalized, where suitable Péclet numbers for each region appear such that these numbers represent eigenvalues for the mathematical model, and when they are obtained, the relative position of the interfaces between each region is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Parameter defined in Eq. (14)

b :

Parameter defined in Eq. (14)

Bo :

Bond number, \(K\rho _{\mathrm{l}}g{/}\sigma \)

\(c_{\mathrm{pl}}\) :

Effective specific heat of liquid

\(c_{\mathrm{pv}}\) :

Effective specific heat of vapor

Ca :

Capillary number, \(\dot{m}_{0}\nu _{\mathrm{l}} / \sigma \)

Da :

Darcy number, \((\varepsilon K)^{1/2}/\hbox {H}\)

\(d_{\mathrm{p}}\) :

Pore diameter

g:

Acceleration of gravity

H :

Thickness of the porous matrix

\(h_{\mathrm{lv}}\) :

Latent heat of evaporation

J(s):

Leverett’s function

\(Ja_{\mathrm{lv}}\) :

Jakob number for the two-phase region, \(c_{\mathrm{pl}} T_{\mathrm{sat}} /h_{\mathrm{lv}}\)

Ja :

Jakob number, \(c_{\mathrm{pl}} (T_{\mathrm{sat}}-T_{0}) /h_{\mathrm{lv}}\)

K :

Absolute permeability

\(K_{\mathrm{rl}}\) :

Relative permeability of the liquid phase

\(K_{\mathrm{rv}}\) :

Relative permeability of the vapor phase

\(k_{\mathrm{lv}}\) :

Effective thermal conductivity in the two-phase region

\(k_{\mathrm{l}}\) :

Thermal conductivity of the liquid phase

\(k_{\mathrm{v}}\) :

Thermal conductivity of the vapor phase

\(k_{\mathrm{s}}\) :

Thermal conductivity of the solid

\(k_{\alpha e}\) :

Effective thermal conductivity in the liquid and vapor regions

\(k^{*}\) :

Dimensionless effective thermal conductivity

\(L_{\mathrm{l}}\) :

Unknown length of the liquid region

\(\bar{L}_{\mathrm{l}}\) :

Dimensionless length of the liquid region, \(L_{\mathrm{l}}/\hbox {H}\)

\(L_{\mathrm{lv}}\) :

Unknown length of the two-phase region

\(\bar{L}_{\mathrm{lv}}\) :

Dimensionless length of the two-phase region, \(L_{\mathrm{lv}}/\hbox {H}\)

\(L_{\mathrm{v}}\) :

Unknown length of the vapor region

\(\bar{L}_{\mathrm{v}}\) :

Dimensionless length of the vapor region, \(L_{\mathrm{v}}/\hbox {H}\)

Le :

Modified capillary Lewis number

\(\dot{m}_{0}\) :

Coolant flow rate

\(\dot{m}_{\mathrm{l}}\) :

Mass flux of liquid in the two-phase region

\(\dot{m}_{\mathrm{v}}\) :

Mass flux of vapor in the two-phase region

M :

Molar mass

\(p_{\mathrm{l}}\) :

Pressure of the liquid phase

\(p_{\mathrm{v}}\) :

Pressure of the vapor phase

\(Pe_{\mathrm{l}}\) :

Péclet number of liquid region

\(Pe_{\mathrm{v}}\) :

Péclet number of vapor region

\(Pe_{\mathrm{c}}\) :

Péclet number of the system

\((Pe_{\mathrm{v}})_{i+1}\) :

Péclet number used in the iteration process

\((Pe_\mathrm{v})_{i}\) :

Initial guessed Péclet number

\(\Delta Pe_\mathrm{v}\) :

Increment to the corrected Péclet number

\(p_{\mathrm{c}}\) :

Capillary pressure

\(q''\) :

Heat flux

\(q''_{\mathrm{v}}\) :

Heat flux defined in Eq. (24)

Q :

Parameter defined in Eq. (38)

R :

Universal gas constant

s :

Dimensionless liquid saturation, \((s_{\mathrm{l}}-s_{\mathrm{li}})/(1-s_{\mathrm{li}})\)

\(s_{\mathrm{l}}\) :

Liquid saturation

\(s_{\mathrm{li}}\) :

Irreducible liquid saturation

T :

Absolute temperature

\(T_{\mathrm{sat}}\) :

Saturation temperature

\(T_{\mathrm{top}}\) :

Temperature at the upper surface

\(T_{\mathrm{l}}\) :

Temperature of the liquid region

\(T_{\mathrm{lv}}\) :

Temperature of the two-phase region

\(T_{\mathrm{v}}\) :

Temperature of the vapor region

\(T_{0}\) :

Temperature of the coolant flow at the bottom of the porous matrix

\(T_{\mathrm{lv}}\) :

Temperature in the two-phase region

\(T_{\mathrm{int}}\) :

Temperature of the interface between the two-phase and vapor region

\(\Delta T_{\mathrm{v}}\) :

Temperature drop in the vapor region

\(u_{\mathrm{l}}\) :

Superficial velocity of the liquid phase

\(u_{\mathrm{v}}\) :

Superficial velocity of the vapor phase

y :

Transversal coordinate at the system

Y :

Dimensionless transversal coordinate of the vapor region

z :

Dimensionless transversal coordinate of the two-phase region

\(\alpha \) :

Represents the liquid or vapor phases, \(\alpha = \hbox {l, v}\)

\(\bar{\alpha }\) :

Ratio of vapor to liquid density

\(\beta \) :

Dimensionless parameter defined in Eq. (43)

\(\gamma \) :

Dimensionless parameter defined in Eq. (31)

\(\bar{\gamma }\) :

Dimensionless parameter defined in Eq. (31)

\(\varepsilon \) :

Porosity of the porous medium

\(\eta \) :

Dimensionless transversal coordinate for the liquid region

\(\theta _{\mathrm{l}}\) :

Dimensionless temperature for the liquid region

\(\theta _{\mathrm{lv}}\) :

Dimensionless temperature for the two-phase region

\(\theta _{\mathrm{v}}\) :

Dimensionless temperature for the vapor region

\(\mu _{\mathrm{l}}\) :

Dynamic viscosity of the fluid

\(\nu _{\mathrm{l}}\) :

Kinematic viscosity for the liquid phase

\(\nu _{\mathrm{v}}\) :

Kinematic viscosity for the vapor phase

\(\bar{\nu }\) :

Ratio of kinematic viscosities of liquid and vapor

\(\Omega \) :

Dimensionless parameter defined in Eq. (31)

\(\xi \) :

Dimensionless parameter defined in Eq. (38)

\(\rho _{\mathrm{l}}\) :

Density of the liquid phase

\(\rho _{\mathrm{v}}\) :

Density of the vapor phase

\(\sigma \) :

Surface tension

\(\phi \) :

Dimensionless parameter defined in Eq. (38)

c:

Capilar

e:

Effective

int:

Refers to the interface between the two-phase region and vapor region

0:

Coolant conditions

l:

Conditions at the liquid phase

lv:

Conditions at the two-phase region

r:

Relative

s:

Conditions at the solid phase

sat:

Conditions of saturation

top:

Refers to the upper surface

v:

Conditions at vapor phase

References

  • Baggio, P., Bonacina, C., Scherefler, B.A.: Some considerations on modeling heat and mass transfer in porous media. Transp. Porous Media 28(3), 233–251 (1997)

    Article  Google Scholar 

  • Bau, H.H., Torrance, K.: Boiling in low-permeability porous materials. Int. J. Heat Mass Transf. 25, 45–55 (1982)

    Article  Google Scholar 

  • Bridge, L., Bradean, R., Ward, M.J., Wetton, B.R.: The analysis of a two-phase zone with condensation in a porous medium. J. Eng. Math. 45(3–4), 247–268 (2003)

    Article  Google Scholar 

  • Faghri, A., Zhang, Y.: Transport Phenomena in Multiphase Systems. Academic Press, New York (2006)

    Google Scholar 

  • He, F., Wang, J., Xu, L., Wang, X.: Modeling and simulation of transpiration cooling with phase change. Appl. Therm. Eng. 58, 173–180 (2013)

    Article  Google Scholar 

  • Hoffman, J.D.: Numerical Methods for Engineers and Scientists. Marcel Dekker Inc., New York (2001)

    Google Scholar 

  • Kaviany, M.: Principles of Heat and Mass Transfer. Springer, New York (1995)

    Google Scholar 

  • Kukreti, A.R., Rajapaksa, Y.: A numerical model for simulating two-phase flow through porous media. Appl. Math. Model. 13, 268–281 (1989)

    Article  Google Scholar 

  • Leverett, M.: Capillary behavior in porous solids. Trans. AIME 142(1), 152–169 (1941)

    Article  Google Scholar 

  • Olivella, S., Gens, A.: Vapour transport in low permeability unsaturated soils with capillary effects. Transp. Porous Media 40, 219–241 (2000)

    Article  Google Scholar 

  • Rubin, A., Schweitzer, S.: Heat transfer in porous media with phase change. Int. J. Heat Mass Transf. 15, 43–60 (1972)

    Article  Google Scholar 

  • Rutqvist, J., Zheng, L., Chen, F., Liu, H.H., Birkholzer, J.: Modeling of coupled thermo-hydro-mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations. Rock Mech. Rock Eng. 47, 167–186 (2014)

    Article  Google Scholar 

  • Shi, J.X., Wang, J.H.: A numerical investigation of transpiration cooling with liquid coolant phase change. Transp. Porous Media 87, 703–716 (2011)

    Article  Google Scholar 

  • Teplitskii, Y.S., Kovenskii, V.I.: Concerning the filtrational cooling of a heat-releasing granular bed in the presence of a first-order phase transition. J. Eng. Phys. Thermophys. 80(2), 311–321 (2007)

    Article  Google Scholar 

  • Udell, K.S.: Heat transfer in porous media considering phase change and capillarity—heat pipe effect. Int. J. Heat Mass Transf. 28, 485–494 (1985)

    Article  Google Scholar 

  • Udell, K.S.: Heat transfer in porous media heated from above with evaporation condensation, and capillary effects. Trans. ASME J. Heat Transf. 105(3), 485–492 (1983)

    Article  Google Scholar 

  • Wang, C.Y., Beckermann, C., Fan, C.: Numerical study of boiling and natural convection in capillary porous media using the two-phase mixture model. Numer. Heat Trans. A Appl. 26(4), 375–398 (1994)

    Article  Google Scholar 

  • Wang, C.Y.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer. Heat Tranf. B Fundam. 32(1), 85–105 (1997)

    Article  Google Scholar 

  • Wang, C.Y., Beckermann, C.: A two-phase mixture model of liquid–gas flow and heat transfer in capillary porous media-I. Formulation. Int. J. Heat Mass Transf. 36(11), 2747–2758 (1993a)

  • Wang, C.Y., Beckermann, C.: A two-phase mixture model of liquid–gas flow and heat transfer in capillary porous media-II. Application to pressure-driven boiling flow adjacent to a vertical heated plate. Int. J. Heat Mass Transf. 36(11), 2759–2768 (1993b)

  • Wei, K., Wang, J., Mao, M.: Model discussion of transpiration cooling with boiling. Transp. Porous Media 94(1), 303–318 (2012)

    Article  Google Scholar 

  • Wetton, B.R., Bridge, L.J.: A mixture formulation for numerical capturing of a two-phase/vapor interface in a porous medium. J. Comput. Phys. 225(2), 2043–2068 (2007)

    Article  Google Scholar 

  • Xin, C., Rao, Z., You, X., Song, Z., Han, D.: Numerical investigation of vapor–liquid heat and mass transfer in porous media. Energy Convers. Manag. 78, 1–7 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the research grants no. CB-2013/220900 of Consejo Nacional de Ciencia y Tecnología (CONACyT) and 20150919 of SIP-IPN at Mexico. M. Peralta acknowledges the support of UNAM program of doctoral fellowship, and to the CONACyT program for a postdoctoral fellowship (12525) granted to spend a year as a postdoctoral researcher at SEPI-ESIME IPN. The authors also wish to express their thanks to the very competent Reviewers for the valuable comments and suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bautista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, M., Méndez, F. & Bautista, O. Phase-Change Transpiration Cooling in a Porous Medium: Determination of the Liquid/Two-Phase/Vapor Interfaces as a Problem of Eigenvalues. Transp Porous Med 112, 167–187 (2016). https://doi.org/10.1007/s11242-016-0637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0637-7

Keywords

Navigation