Skip to main content
Log in

A Numerical Investigation of Transpiration Cooling with Liquid Coolant Phase Change

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This article presents a numerical approach to investigate the transpiration cooling problems with coolant phase change within porous matrix. A new model is based on the coupling of the two-phase mixture model (TPMM) with the local thermal non- equilibrium (LTNE), and used to describe the liquid coolant phase change and heat exchange processes in this article. The effects of thermal conductivity, porosity, and sphere diameter of the porous matrix on the temperature and saturation distributions within the matrix are studied. The results indicate that an increase in the porosity or sphere diameter can lead to an area dilation of two-phase region and a rise of liquid temperature; whereas an increase in the thermal conductivity of the porous matrix results only in a rise of liquid temperature, but drops of solid temperature and temperature gradient on the hot surface. The influence of hot surface pressure on cooling effect is discussed by numerical simulations, and numerical results show that the effect of the transpiration cooling will be worse under higher pressure. The investigation also discovers an inverse phenomenon to the past investigations on the transpiration cooling without coolant phase change, namely in two-phase region, coolant temperature may be higher than solid temperature. This inversion can be captured only by the new LTNE–TPMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

y :

Coordinate

L :

Thickness of solid matrix

T :

Temperature

k :

Thermal conductivity

m :

Coolant mass flow rate

d p :

Characteristic size of porous matrix

c f :

Coolant specific heat capacity

f (s):

Hindrance function

g :

Gravitational constant

h c :

Interfacial convective coefficient

h :

Enthalpy

h fg :

Latent heat

J (s):

Capillary J-function

K :

Permeability

k r :

Relative permeability

P :

Pressure

Q :

Heat flux

s :

Liquid saturation

u :

Velocity

\({\varepsilon }\) :

Porosity

γ :

Two-phase advection correlation

Γ :

Effective diffusion coefficient

α sf :

Specific surface of porous media

μ :

Viscosity

λ:

Relative mobilities

β :

Fluid expansion coefficient

ν :

Kinetic viscosity

σ :

Surface tension

ρ :

Density

f:

Fluid

c:

Coolant

l:

Liquid

v:

Vapor

sat:

Saturated state

s:

Solid

sf:

Solid-fluid

eff:

Effective

References

  • Andoh Y.H., Lips B.: Predication of porous walls thermal protection by effusion or transpiration cooling an analytical approach. Appl. Therm. Eng. 23, 1947–1958 (2003)

    Article  Google Scholar 

  • Fatt I., Klikoff W.A.: Effect of fractional wettability on multiphase flow through porous media, AIME Technical Note #2043. AIME Trans. 216, 246 (1959)

    Google Scholar 

  • Glass, D.E., Dilley, A.D.: Numerical analysis of convection transpiration cooling, NASA/TM-1999-209828 (1997)

  • Greuel, D., Herbertz, A., Haidn, O.J., Ortelt, M., Hald, H.: Transpiration cooling applied to c/c liners of cryogenic liquid rocket engines. In: AIAA/ASME/ SEA/ASEE/JPC Conference and Exhibit, 11–14 July, Fort Lauderdale, Florida, pp. 2004–3682 (2004)

  • Kazuhisa, Y., Jun, A., Hidetoshi, H., Saburo, T.: Numerical investigation of thermofluid flow characteristics with phase change against high heat flux in porous media. ASME J. Heat Transf. 130, 012602-1–012602-12 (2008)

    Google Scholar 

  • Keener D., Lenertz J., Bowersox R., Bowman J.: Transpiration cooling effects on nozzle heat transfer and performance. J. Spacecr. Rocket. 32, 981–985 (1995)

    Article  Google Scholar 

  • Landis, J.A., Bowman, J.W.: Numerical study of a transpiration cooled rocket nozzle [R]. AIAA Meeting 1996 Paper 96-2580 (1996)

  • Luikov A.V., Vasiliev L.L., Mayorov V.A.: Static characteristics of equilibrium two-phase transpiration cooling systems. Int. J. Heat Mass Transf. 18(7–8), 863–874 (1975a)

    Article  Google Scholar 

  • Luikov A.V., Vasiliev L.L., Mayorov V.A.: Determination of the region of stable and reliable operation of equilibrium two-phase transpiration cooling system. Int. J. Heat Mass Transf. 18(7–8), 885–892 (1975b)

    Article  Google Scholar 

  • Naik A.S., Dhir V.K.: Forced flow evaporative cooling of a volumetrically heated porous layer. Int. J. Heat Mass Transf. 25(4), 541–552 (1982)

    Article  Google Scholar 

  • Najjari M., Ben Nasrallah S.: Numerical study of boiling with mixed convection in a vertical porous layer. Int. J. Thermal Sci. 41(10), 913–925 (2002)

    Article  Google Scholar 

  • Peterson G.P., Chang C.S.: Heat transfer analysis and evaluating for two-phase flow in porous-channel heat sinks. Numer. Heat Transf. A 31, 113–130 (1997)

    Article  Google Scholar 

  • Ramesh P.S., Torrance K.E.: Numerical algorithm for problems involving boiling and natural convection in porous materials. Numer. Heat Transf. B 17, 1–24 (1990)

    Article  Google Scholar 

  • Ramesh P.S., Torrance K.E.: Boiling in a porous layer heated from below: effects of natural convection and a moving liquid two-phase interface. J. Fluid Mech. 257, 289–309 (1993)

    Article  Google Scholar 

  • Sang, H., Choi, Stephen, J. Scotti, Kyo, D. Song, H. Reis: Transpiration cooling of a scram jet engine combustion chamber. In: The 32th AIAA Thermophysics Conference, Atlanta, Georgia, AIAA-97-2576, (1997)

  • Trevino C., Medina A.: Analysis of the transpiration cooling of a thin porous plate in a hot laminar convective flow. Eur. J. Mech. B/Fluids 18(2), 245–260 (1999)

    Article  Google Scholar 

  • Udell K.S.: Heat transfer on porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Transf. 28(2), 485–495 (1985)

    Article  Google Scholar 

  • van Foreest A., Sippel M., Guelhan A., Esser B., Ambrosius B.A.C., Sudmeijer K.: Transpiration cooling using liquid water. J. Thermophys. Heat Transf. 23(4), 693–702 (2009)

    Article  Google Scholar 

  • Waite M.W., Amin M.R.: Numerical investigation of two-phase fluid flow and heat transfer in porous media heated from the side. Numer. Heat Transf. A 35, 271–290 (1999)

    Article  Google Scholar 

  • Wang C.Y.: A fixed-grid numerical algorithm for two-phase flow and heat transfer in porous media. Numer. Heat Transf. B 32(1), 85–105 (1997)

    Article  Google Scholar 

  • Wang C.Y., Beckermann C.: A two-phase mixture model of liquid-gas flow heat transfer in capillary porous media–I: formulation. Int. J. Heat Mass Transf. 36(11), 2747–2758 (1993)

    Article  Google Scholar 

  • Wang, J.H., Shi, J.X.: A discussion of boundary conditions of transpiration cooling problems using analytical solution of LTNE model. ASME J. Heat Transf. 130, 1 (2008)

    Google Scholar 

  • Wang J.H., Wang H.N.: A discussion of transpiration cooling problems through an analytical solution of local thermal non-equilibrium model. ASME J. Heat Transf. 128, 1093–1098 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J.X., Wang, J.H. A Numerical Investigation of Transpiration Cooling with Liquid Coolant Phase Change. Transp Porous Med 87, 703–716 (2011). https://doi.org/10.1007/s11242-010-9710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9710-9

Keywords

Navigation