Skip to main content
Log in

Effects of Heat Generations on the Thermal Response of Channels Partially Filled with Non-Darcian Porous Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The forced convective thermal response of channels partially filled with porous materials is analytically studied. It is assumed that internal heat generations exist within both the fluid and solid phases. Effects of internal heat generations within the both phases on the thermal response of the channel resulting in the heat flux bifurcation phenomenon are discussed for the first time. No study previously analyzed the heat flux bifurcation in a non-Darcian porous medium with heat-generating porous materials. To obtain the most general thermo-hydraulic behavior, the Darcy–Brinkman equation of motion and the two-energy model (local thermal non-equilibrium) along with two practical thermal boundary conditions (models A and B) are used. Consequently, two possible thermal responses are obtained for each phase. Results show that insertion of a porous material inside a heat-convecting fluid leads to have a more uniform temperature distribution which translates to a lower thermal resistance and an enhanced heat transfer. Furthermore, it is seen that increasing the porous material thickness increases the ratio of heat transferred by the porous medium compared to that convected by the clear fluid flow. In addition, the internal heat generations drastically change the temperature distribution. Finally, it is shown that the internal heat generations can inverse the heat flux direction at the porous–fluid interface (the heat flux bifurcation phenomenon). Criteria for the heat flux bifurcation for a partially porous-filled channel are presented under the Darcy’s law of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(a_\mathrm{sf}\) :

Specific area per unit volume of porous material \(\left( \hbox {m}^{-1}\right) \)

A :

Constant defined by Eq. (18)

B :

Constant defined by Eq. (19)

Bi :

Biot number, \(a_\mathrm{sf} h_\mathrm{sf} h_{0}^{2}/k_\mathrm{s,eff}\)

C :

Constant defined by Eq. (21)

\(C_\mathrm{p}\) :

Specific heat of the fluid at constant pressure, \(\left( \hbox {J\,kg}^{-1}\mathrm{K}^{-1}\right) \)

Da :

Darcy number, \(K/{h}_{0}^{2}\)

\(D_\mathrm{h}\) :

Hydraulic diameter of the channel \(\left( 4{h}_{0}\right) \)

\(h_\mathrm{sf}\) :

Interphase fluid to solid heat transfer coefficient \(\left( \hbox {W\,m}^{-2}\mathrm{K}^{-1}\right) \)

\({h}_{0}\) :

Height of the channel (m)

\({h}_{\mathrm{p}}\) :

Porous substrate thickness (m)

K :

Permeability of the porous medium \(\left( \hbox {m}^{2}\right) \)

k :

The ratio of solid effective thermal conductivity to that of the fluid, \((1-\varepsilon )k_\mathrm{s}/( \varepsilon k_\mathrm{f})\)

\(k_\mathrm{f}\) :

Thermal conductivity of the fluid \((\hbox {W\,m}^{-1}\mathrm{K}^{-1})\)

\(k_\mathrm{f,\mathrm{eff}}\) :

Effective thermal conductivity of the fluid, \(\varepsilon k_\mathrm{f}\)

\(k_\mathrm{s}\) :

Thermal conductivity of the solid \((\hbox {W\,m}^{-1}\mathrm{K}^{-1})\)

\(k_\mathrm{s,eff}\) :

Effective thermal conductivity of the solid, \((1-\varepsilon )k_\mathrm{s}\)

Nu :

Nusselt number

\(O_{1}\) :

Constant defined by Eq. (45b)

\(O_{2}\) :

Constant defined by Eq. (45c)

p :

Pressure (Pa)

q :

Heat flux per area \((\hbox {W\,m}^{-2})\)

Re :

Reynolds number, \({Re}=\rho \overline{{u}}{h}_{0} /\mu \)

S :

Ratio of the porous medium thickness to the channel height, \({h}_{\mathrm{p}}/{h}_{0}\)

\(S_\mathrm{f}\) :

Internal heat generation within the fluid phase \((\hbox {W\,m}^{-3})\)

\(S_\mathrm{s}\) :

Internal heat generation within the solid phase \((\hbox {W\,m}^{-3})\)

T :

Temperature \((\mathrm{K})\)

\(T_\mathrm{m}\) :

Average temperature \(\mathrm{(K)}\)

u :

Longitudinal velocity \((\hbox {m}/\mathrm{s})\)

\(\overline{{u}}\) :

Average velocity \((\hbox {m}/\mathrm{s})\)

\(u_{r}\) :

Characteristic velocity, \(-\frac{h_{0}^{2}}{\mu }\frac{\partial p}{\partial x}\)

U :

Dimensionless velocity, \(u/{u_{r}}\)

\(\overline{{U}}\) :

Normalized velocity

x :

longitudinal coordinate (m)

y :

Transverse coordinate (m)

Y :

Dimensionless y coordinate, \(y/{h}_{0}\)

Z :

Constant, \(\sqrt{1/Da}\)

\(\beta \) :

Dimensionless internal heat generation defined by Eq. (26)

\(\gamma \) :

Ratio of wall heat flux to the heat flux at the interface, \(q_\mathrm{w}/q_{\mathrm{interface}}\)

G :

Constant defined by Eq. (48d)

\(\varepsilon \) :

Porosity of the porous medium

\(\varTheta \) :

Dimensionless temperature

\(\mu \) :

Viscosity \((\hbox {kg\,m}^{-1}\mathrm{s}^{1})\)

\(\rho \) :

Density \((\hbox {kg}/\hbox {m}^{3})\)

\(\xi \) :

Constant used in Eq. (37)

\(\phi _{i};i=1-3\) :

Constants defined by Eqs. (48a)–(48c)

eff:

Effective property

f:

Fluid

f1:

Fluid in the clear region

f2:

Fluid in the porous medium

in:

Inlet

m:

Mean

s:

Solid

w:

Wall

interface:

The interface between the porous medium and the clear fluid region

-:

Mean value

’,”,”’,””:

First, second, third, and forth derivatives with respect to Y

References

  • Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  Google Scholar 

  • Alazmi, B., Vafai, K.: Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 45, 3071–3087 (2002)

    Article  Google Scholar 

  • Amiri, A., Vafai, K., Kuzay, T.M.: Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons. Numer. Heat Transf. Part A 27, 651–664 (1995)

    Article  Google Scholar 

  • Bovand, M., Rashidi, S., Dehghan, M., Esfahani, J.A., Valipour, M.S.: Control of wake and vortex shedding behind a porous bluff-body by exerting an external magnetic field. J. Magn. Magn. Mater. 385, 198–206 (2015)

  • Chen, X., Tavakkoli, F., Vafai, K.: Analysis and characterization of metal foam-filled double-pipe heat exchangers. Numer. Heat Transf. Part A 68, 1031–1049 (2015)

    Article  Google Scholar 

  • Dehghan, M., Jamal-Abad, M.T., Rashidi, S.: Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Convers. Manag. 85, 264–271 (2014a)

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S.: Perturbation analysis of the local thermal non-equilibrium condition in a fluid saturated porous medium bounded by an iso-thermal channel. Transp. Porous Media 102(2), 139–152 (2014b)

    Article  Google Scholar 

  • Dehghan, M., Daneshipour, M., Valipour, M.S., Rafee, R., Saedodin, S.: Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Convers. Manag. 92, 244–250 (2015a)

    Article  Google Scholar 

  • Dehghan, M., Mahmoudi, Y., Saedodin, S., Valipour, M.S.: Combined conduction–convection–radiation heat transfer of slip flow inside a micro-channel filled with a porous material. Transp. Porous Media 108, 413–436 (2015b)

    Article  Google Scholar 

  • Dehghan, M., Rahmani, Y., Ganji, D.D., Saedodin, S., Valipour, M.S., Rashidi, S.: Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: homotopy perturbation method versus numerical analysis. Renew. Energy 74, 448–455 (2015c)

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S.: Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: a perturbation solution. Energy Convers. Manag. 91, 259–266 (2015d)

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S.: Analytical study of heat flux splitting in micro-channels filled with porous media. Transp. Porous Media 109, 571–587 (2015e)

  • Dehghan, M., Valipour, M.S., Keshmiri, A., Saedodin, S., Shokri, N.: On the thermally developing forced convection through a porous material under the local thermal non equilibrium condition: an analytical study. Inter J Heat Mass Transfer (2015f, in preparation)

  • Forooghi, P., Abkar, M., Saffar-Avval, M.: Steady and unsteady heat transfer in a channel partially filled with porous media under thermal non-equilibrium condition. Transp. Porous Media 86, 177–198 (2011)

    Article  Google Scholar 

  • Imani, G.R., Maerefat, M., Hooman, K.: Estimation of heat flux bifurcation at the heated boundary of a porous medium using a pore-scale numerical simulation. Int. J. Therm. Sci. 54, 109–118 (2012)

    Article  Google Scholar 

  • Imani, G.R., Maerefat, M., Hooman, K.: Pore-scale numerical experiment on the effect of the pertinent parameters on heat flux splitting at the boundary of a porous medium. Transp. Porous Media 98, 631–649 (2013)

    Article  Google Scholar 

  • Jiang, P.X., Lu, X.C.: Numerical simulation and theoretical analysis of thermal boundary characteristics of convection heat transfer in porous media. Int. J. Heat Fluid Flow 28, 1144–1156 (2007)

    Article  Google Scholar 

  • Kakac, S., Bergles, A.E., Mayinger, F., Yuncu, H.: Heat transfer enhancement of heat exchangers. In: Proceedings of the NATO Advanced Study Institute (Çesme-Izmir, Turkey). Kluwer, Dordrecht, The Netherlands (1999)

  • Karimi, N., Mahmoudi, Y., Mazaheri, K.: Temperature fields in a channel partially-filled with a porous material under local thermal non-equilibrium condition-an exact solution. J. Mech. Eng. Sci. Part C. (2014). doi:10.1177/0954406214521800

  • Kim, S.J., Kim, D.: Thermal interaction at the interface between a porous medium and an impermeable wall. J. Heat Transf. 123, 527–533 (2001)

    Article  Google Scholar 

  • Lee, D.Y., Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Transf. 31, 423–435 (1999)

    Article  Google Scholar 

  • Mahmoudi, Y.: Effect of thermal radiation on temperature differential in a porous medium under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 76, 105–121 (2014)

    Article  Google Scholar 

  • Mahmoudi, Y.: Constant wall heat flux boundary condition in micro-channels filled with a porous medium with internal heat generation under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 85, 524–542 (2015)

    Article  Google Scholar 

  • Mahmoudi, Y., Maerefat, M.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Therm. Sci. 50(12), 2386–2401 (2011)

    Article  Google Scholar 

  • Mahmoudi, Y., Karimi, N.: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 68, 161–173 (2014)

    Article  Google Scholar 

  • Mahmoudi, Y., Karimi, N., Mazaheri, K.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous–fluid interface. Int. J. Heat Mass Transf. 70, 875–891 (2014)

    Article  Google Scholar 

  • Marafie, A., Vafai, K.: Analysis of non-Darcian effects on temperature differentials in porous media. Int. J. Heat Mass Transf. 44, 4401–4411 (2001)

    Article  Google Scholar 

  • Mirzaei, M., Dehghan, M.: Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transf. 49, 1803–1811 (2013)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transf. 42, 3245–3252 (1999)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 70, 430–433 (2014)

    Article  Google Scholar 

  • Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid- I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    Article  Google Scholar 

  • Ouyang, X., Vafai, K., Jiang, P.: Analysis of thermally developing flow in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 67, 768–775 (2013)

    Article  Google Scholar 

  • Owrak, M., Aminy, M., Jamal-Abad, M.T., Dehghan, M.: Experiments and simulations on thermal performance of a sunspace attached to a room including heat-storing porous bed and water tanks. Build. Environ. 92, 142–151 (2015)

    Article  Google Scholar 

  • Pavel, B.I., Mohammad, A.A.: An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. Int. J. Heat Mass Transf. 47, 4939–4952 (2004)

    Article  Google Scholar 

  • Prakash, D., Muthtamilselvan, M., Doh, D.H.: Effect of heat generation on forced convection through a porous saturated duct. Transp. Porous Media 95, 377–388 (2012)

    Article  Google Scholar 

  • Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder partially filled with a porous medium. Numer. Heat Transf. Part A 64, 994–1015 (2013)

    Article  Google Scholar 

  • Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder containing a horizontal porous layer: Darcy model and Brinkman-extended Darcy model. Transp. Porous Media 101, 437–463 (2014)

    Article  Google Scholar 

  • Vafai, K.: Handbook of Porous Media. Marcel Dekker, New York (2000)

    Book  Google Scholar 

  • Wang, K., Tavakkoli, F., Vafai, K.: Analysis of gaseous slip flow in a porous micro-annulus under local thermal non-equilibrium condition - An exact solution. Int. J. Heat Mass Transf. 89, 1331–1341 (2015a)

    Article  Google Scholar 

  • Wang, K., Tavakkoli, F., Wang, S., Vafai, K.: Forced convection gaseous slip flow in a porous circular microtube: an exact solution. Int. J. Therm. Sci. 97, 152–162 (2015)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: Analysis of temperature gradient bifurcation in porous media—an exact solution. Int. J. Heat Mass Transf. 53, 4316–4325 (2010)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects—an exact solution. Int. J. Heat Mass Transf. 54, 5286–5297 (2011a)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: Restrictions on the validity of the thermal conditions at the porous–fluid interface: an exact solution. J. Heat Transf. 133, 112601 (2011b)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere thanks to Dr. Yasser Mahmoudi (University of Cambridge) for his valuable help during preparation of the present study. In addition, the author would like to thank the support by the Young Researchers and Elite Club of Islamic Azad University (Semnan Branch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M. Effects of Heat Generations on the Thermal Response of Channels Partially Filled with Non-Darcian Porous Materials. Transp Porous Med 110, 461–482 (2015). https://doi.org/10.1007/s11242-015-0567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0567-9

Keywords

Navigation