Skip to main content
Log in

Perturbation Analysis of the Local Thermal Non-equilibrium Condition in a Fluid-Saturated Porous Medium Bounded by an Iso-thermal Channel

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This study focuses analytically on the local thermal non-equilibrium (LTNE) effects in the developed region of forced convection in a saturated porous medium bounded by isothermal parallel-plates. The flow in the channel is described by the Brinkman–Forchheimer-extended Darcy equation and the LTNE effects are accounted by utilizing the two-equation model. Profiles describing the velocity field obtained by perturbation techniques are used to find the temperature distributions by the successive approximation method. A fundamental relation for the temperature difference between the fluid and solid phases (the LTNE intensity) is established based on a perturbation analysis. It is found that the LTNE intensity (\(\Delta \textit{NE}\)) is proportional to the product of the normalized velocity and the dimensionless temperature at LTE condition. Also, it depends on the conductivity ratio, Da number, and the porosity of the medium. The intensity of LTNE condition (\(\Delta \textit{NE}\)) is maximum at the middle of the channel and decreases smoothly to zero by moving to the wall. Finally, the established relation for the intensity of LTNE condition is simple and fundamental for estimating the importance of LTNE condition and validation of numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(a_\mathrm{sf}\) :

Specific surface area

\(c_\mathrm{p}\) :

Specific heat at constant pressure

\(C_\mathrm{F}\) :

Inertial constant (Eq. 12)

\(d_\mathrm{p}\) :

Particle diameter

Da :

Darcy number (K/H\(^{2}\))

\(F\) :

Forchheimer number

\(G\) :

Negative of the applied pressure gradient in flow direction

\(H\) :

Half of the channel gap

\(h_\mathrm{sf}\) :

Fluid-solid heat transfer coefficient

\(K\) :

Permeability of the medium

\(k\) :

Conductivity ratio

\(k_\mathrm{f}\) :

Conductivity of fluid phase

\(k_\mathrm{f,eff}\) :

Effective conductivity of fluid phase

\(k_\mathrm{m}\) :

Effective conductivity of the medium (\(k_\mathrm{f,eff}+ k_\mathrm{s,eff})\)

\(k_\mathrm{s}\) :

Conductivity of solid phase

\(k_\mathrm{s,eff}\) :

Effective conductivity of solid phase

\(M\) :

Viscosity ratio

Nu :

Nusselt number

\(O\) :

Order of magnitude

Pr :

Prandtl number

\(q^{\prime \prime }_\mathrm{w}\) :

Heat flux at the wall

\(s\) :

Porous media shape parameter

\(T\) :

Temperature

\(T_\mathrm{m}\) :

Bulk mean temperature

\(T_\mathrm{w}\) :

Wall temperature

\(u\) :

Dimensionless velocity

\(u^*\) :

Velocity

\(\mathop {u}\limits ^{{\frown }}\) :

Normalized velocity

\(u^*_\mathrm{m}\) :

Mean velocity

\(x^*,y^*\) :

Dimensional coordinates

\(y\) :

Dimensionless coordinate

\(\Delta \textit{NE}\) :

Complex representing the intensity of LTNE condition

\(\varepsilon \) :

Small parameter (\(1/ h_\mathrm{sf} \, a_\mathrm{sf})\)

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Fluid viscosity

\(\mu _\mathrm{eff}\) :

Effective viscosity in the Brinkman term

\(\rho \) :

Fluid density

\(\upphi \) :

Porosity of the medium

0,1,2:

Coordinate identifier

f:

Fluid phase

s:

Solid phase

References

  • Alazmi, B., Vafai, K.: Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 45, 3071–3087 (2002)

    Article  Google Scholar 

  • Hooman, K., Merrikh, A.A.: Analytical solution of forced convection in a duct of rectangular cross section saturated by a porous medium. ASME J. Heat Transf. 128, 596–600 (2006)

    Article  Google Scholar 

  • Hooman, K., Gurgenci, H.: Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium. Transp. Porous Med. 68, 301–319 (2007)

    Article  Google Scholar 

  • Hooman, K.: A perturbation solution for forced convection in a porous-saturated duct. J. Comput. App. Math. 211, 57–66 (2008)

    Article  Google Scholar 

  • Hung, Y., Tso, C.P.: Effects of viscous dissipation on fully developed forced convection in porous media. Int. Comm. Heat Mass Transf. 36, 597–603 (2009)

    Article  Google Scholar 

  • Kaviany, M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28, 851–858 (1985)

    Article  Google Scholar 

  • Khandelwal, M.K., Bera, P.: A thermal non-equilibrium perspective on mixed convection in a vertical channel. Int. J. Thermal Sci. 56, 23–34 (2012)

    Article  Google Scholar 

  • Kuznetsov, A.V.: A perturbation solution for a nonthermal equilibrium fluid flow through a three-dimensional sensible heat storage packed bed. ASME J. Heat Transf. 118, 508–510 (1996)

    Article  Google Scholar 

  • Kuznetsov, A.V.: A perturbation solution for heating a rectangular sensible heat storage packed bed with a constant temperature at the walls. Int. J. Heat Mass Transf. 40, 1001–1006 (1997a)

    Article  Google Scholar 

  • Kuznetsov, A.V.: Thermal nonequilibrium, non-Darcian forced convection in a channel filled with a fluid saturated porous medium: a perturbation solution. Appl. Sci. Res. 57, 119–131 (1997b)

    Article  Google Scholar 

  • Mahmoudi, Y., Maerefat, M.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Thermal Sci. 50, 2386–2401 (2011)

    Article  Google Scholar 

  • Mahmud, S., Fraser, R.A.: Conjugate heat transfer inside a porous channel. Heat Mass Transf. 41, 568–575 (2005a)

    Article  Google Scholar 

  • Mahmud, S., Fraser, R.A.: Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation. Int. J. Thermal Sci. 44, 21–32 (2005b)

    Article  Google Scholar 

  • Mirzaei, M., Dehghan, M.: Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transf. 49, 1803–1811 (2013)

    Article  Google Scholar 

  • Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    Google Scholar 

  • Nield, D.A., Junqueira, S.L.M., Lage, J.L.: Forced convection in a fluid saturated porous medium channel with isothermal or isoflux boundaries. J. Fluid Mech. 322, 201–214 (1996)

    Article  Google Scholar 

  • Nield, D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1(2), 181–186 (1998)

    Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transf. 42, 3245–3252 (1999)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The interaction of thermal nonequilibrium and heterogeneous conductivity effects in forced convection in layered porous channels. Int. J. Heat Mass Transf. 44, 4369–4373 (2001)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V., Xiong, M.: Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium. Int. J. Heat Mass Transf. 45, 4949–4955 (2002)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Forced convection in a helical pipe filled with a saturated porous medium. Int. J. Heat Mass Transf. 47, 5175–5180 (2004)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Qu, Z.G., Xu, H.J., Tao, W.Q.: Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: an analytical solution. Int. J. Heat Mass Transf. 55, 7508–7519 (2012)

    Article  Google Scholar 

  • Schumann, T.E.W.: Heat transfer: liquid flowing through a porous prism. J. Franklin Inst. 208, 405–416 (1929)

    Article  Google Scholar 

  • Spiga, G., Spiga, M.: A rigorous solution to a heat transfer two-phase model in porous media and packed beds. Int. J. Heat Mass Transf. 24, 355–364 (1981)

    Article  Google Scholar 

  • Vafai, K., Kim, S.J.: Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transf. 111, 1103–1106 (1989)

    Article  Google Scholar 

  • Vafai, K., Kim, S.J.: Discussion of the paper by A. Hadim “Forced convection in a porous channel with localized heat sources”. ASME J. Heat Transf. 117, 1097–1098 (1995)

    Article  Google Scholar 

  • White, H.C., Korpela, S.A.: On the calculation of the temperature distribution in a packed bed for solar energy applications. Solar Energy 23, 141–144 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. D.A. Nield for his valuable help in completing the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Valipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, M., Valipour, M.S. & Saedodin, S. Perturbation Analysis of the Local Thermal Non-equilibrium Condition in a Fluid-Saturated Porous Medium Bounded by an Iso-thermal Channel. Transp Porous Med 102, 139–152 (2014). https://doi.org/10.1007/s11242-013-0267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0267-2

Keywords

Navigation