Skip to main content

Advertisement

Log in

Identification of the Liquid and Vapour Transport Parameters of an Ecological Building Material in Its Early Stages

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

To fulfil the requirements of the new environmental standards in the building sector, increased use of materials containing vegetable particles (hemp) is expected. The manufacturing process of these materials has not yet reached the industrial stage which requires control of the drying process. The objective of this work is to study the various mechanisms of heat and mass transfers occurring during the drying of lime–hemp materials. A macroscopic model has been developed and solved numerically. In order to obtain the moisture transport coefficients, an optimization algorithm was used, allowing the estimation of parameter values by minimising an error criterion between simulated and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(a_{_\mathrm{W}}\) :

Water activity

\(C_{p}\) :

Specific heat at constant pressure (J kg\(^{-1}\) K\(^{-1}\))

\(D\) :

Diffusion coefficient (kg m\(^{-1}\) s\(^{-1}\))

\(e\) :

Thickness (cm)

\(F_\mathrm{m}\) :

Mass flux (kg m\(^{-2}\) s\(^{-1}\))

\(H_\mathrm{r}\) :

Relative humidity (%)

\(h_\mathrm{c}\) :

Convection heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(h_\mathrm{r}\) :

Radiation heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(K\) :

Volumetric rate of the change phase (kg m\(^{-3}\) s\(^{-1}\))

\(k\) :

Intrinsic permeability (m\(^{2}\))

\(k_\mathrm{m}\) :

Mass transfer coefficient (m s\(^{-1}\))

\(k_\mathrm{{rg}}\) :

Relative permeability to the vapour phase

\(k_\mathrm{{rl}}\) :

Relative permeability to the liquid phase

\(m\) :

Mass (kg)

\(M\) :

Molar mass (kg mol\(^{-1}\))

\(P\) :

Pressure (Pa)

\(P_\mathrm{c}\) :

Capillary pressure (Pa)

\(P_{\mathrm{v}\infty }\) :

Partial atmospheric pressure (Pa)

\(P_\mathrm{{vsat}}\) :

Saturation vapour pressure (Pa)

\(R\) :

Perfect gas constant (J mol\(^{-1}\) K\(^{-1}\))

\(T\) :

Temperature (\(^\circ \)C)

\(t\) :

Time (s)

\(V\) :

Velocity (m s\(^{-1}\))

\(v\) :

Filtration velocity (m s\(^{-1}\))

\(W\) :

Moisture content (dry basis) (kg kg\(^{-1}\))

\(x\) :

Coordinate (m)

\(\Delta H_\mathrm{v}\) :

Latent vaporisation heat (J kg\(^{-1}\))

\(\varepsilon \) :

Porosity

\(\lambda ^{*}\) :

Effective thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

\(\mu \) :

Tortuosity factor

\(\mu _\mathrm{l}\) :

Water dynamic viscosity (Pa s)

\(\rho \) :

Density (kg m\(^{-3}\))

a :

Air

eq:

Equivalent

atm:

Atmospheric

av:

Average

exp:

Experiment

f:

Film

g:

Gas

ini:

Initial

l:

Liquid

m:

Monolayer sorption

r:

Relative

s:

Solid

sat:

Saturation

sim:

Simulation

surf:

Surface

v:

Vapour

\(\infty \) :

Equilibrium state

References

  • Bakhshi, M., Mobasher, B., Soranakom, C.: Moisture loss characteristics of cement-based materials under early-age drying and shrinkage conditions. Constr. Build. Mater. 30, 413–425 (2012)

    Article  Google Scholar 

  • Bouloc, P. : Le chanvre industriel. Ouvrage collectif Paris, édition France Agricole (2006)

  • Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Hydrology Paper 3. Colorado State University, Fort Collin (1964)

  • Coles, C., Murio, D.: Parameter estimation for a drying system in a porous medium. Int. J. Comput. Math. Appl. 51, 1519–1528 (2006)

    Article  Google Scholar 

  • Colinart, T., Glouannec, P., Chauvelon, P.: Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 30, 372–380 (2012)

    Article  Google Scholar 

  • Collet, F., Bart, M., Serres, L., Miriel, J.: Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater. 22–6, 1271–1280 (2008)

    Article  Google Scholar 

  • Couture, F., Jomaa, W., Puiggali, J.R.: Relative permeability relations: a key factor for a drying model. Transp. Porous Media 23–3, 303–335 (1996)

    Google Scholar 

  • Dantas, L.B., Orlande, H.R.B., Cotta, R.M.: Estimation of dimensionless parameters of Luikov’s system for heat and mass transfer in capillary porous media. Int. J. Therm. Sci. 41, 217–227 (2002)

    Article  Google Scholar 

  • Dantas, L.B., Orlande, H.R.B., Cotta, R.M.: An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. Int. J. Heat Mass Transf. 46, 1587–1598 (2003)

    Article  Google Scholar 

  • Defraeye, T., Blocken, B., Carmeliet, J.: Influence on uncertainty in heat–moisture transport properties on convective drying of porous materials by numerical modelling. Chem. Eng. Res. Des. (2012). doi:10.1016/i.cherd.2012.06.011

  • Dietl, C., Winter, E., Viskanta, R.: An efficient simulation of heat and mass transfer processes during drying of capillary porous hygroscopic materials. Int. J. Heat Mass Transf. 41, 3611–3625 (1998)

    Article  Google Scholar 

  • Edgar, T.F., Himmelblau, D.M.: Optimization of Chemical Processes, Mc Graw-Hill International Editions, Mc Graw-Hill, New York (2001)

  • Evrard, A.: Transient hygrothermal behaviour of lime–hemp materials. PhD Thesis in Applied Science, Université Catholique de Louvain, Belgique (2008)

  • Glouannec, P., Lecharpentier, D., Noël, H.: Experimental survey on the combination of radiating infrared and microwave sources for the drying of porous material. Appl. Therm. Eng. 22, 1689–1703 (2002)

    Article  Google Scholar 

  • Haouas, A.: Comportement au jeune âge des matériaux cimentaires—Caractérisation et modélisation Chimio-Hydro-Mécanique du retrait. Thèse de doctorat, Ecole Normale Supérieure, Cachan (2007)

  • Huang, C.H., Yeh, C.Y.: An inverse problem in simultaneous estimating the Biot number of heat and mass transfer for a porous material. Int. J. Heat Mass Transf. 45, 4643–4653 (2002)

    Article  Google Scholar 

  • Kellenberger, D., Althaus, H.J., Kunniger, T., Jungbluth, N.: Life cycle inventories of building products. Ecoinvent Report No 7, Dübendorf, Dec (2003)

  • Ketelaars, A., Pel, L., Coumans, W., Kerkhof, P.: Drying kinetics: a comparison of diffusion coefficients from moisture concentration profiles and drying curves. Chem. Eng. Sci. 50, 1187–1191 (1995)

    Article  Google Scholar 

  • Kreith, F.: Inverse Engineering Handbook. Keith A. Woodbury Edition, The Mechanical Engineering Handbook Series. Routledge, London (2003)

    Google Scholar 

  • Lawrence, R.M.H., Mays, T.J., Walker, P., D’ayala, D.: Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim. acta. 444, 179–189 (2006)

    Article  Google Scholar 

  • Marinos-Kouris, D., Maroulis, Z.B.: Transport Properties in the Drying of Solids, Handbook of Industrial Drying, 3rd edn. Arun S, Mujundar Edition. Marcel Dekker, New York (2006)

  • Monge, J., Lamour, V., Moranville, M., Gilliot, C.: Early age cracking of a thin mortar layer: coupling between hydration and drying phenomena. In: ECCOMAS Thematic Conference on Multi-Scale Computational Methods for Solids and Fluids, Cachan (2007)

  • Obeid, W., Alliche, A., Mounajed, G.: Identification of the physical parameters used in the thermo-hygro-mechanical model (application in the case of cement mortar). Transp. Porous Media 45, 215–239 (2001)

    Article  Google Scholar 

  • Olek, W., Weres, J.: Effects of the method of identification of the diffusion coefficient on accuracy of modelling bound water transfer in wood. Transp. Porous Media 66, 135–144 (2007)

    Article  Google Scholar 

  • Salagnac, P., Glouannec, P., Lecharpentier, D.: Numerical modelling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying. Int. J. Heat Mass Transf. 47(19–20), 4479–4489 (2004)

    Article  Google Scholar 

  • Salem, H.S., Chilingarian, G.V.: Influence of porosity and direction of flow on tortuosity in unconsolidated porous media. Energy Sources 22, 207–213 (2000)

    Article  Google Scholar 

  • Scheffler, G.A., Plagge, R.: A whole range hygric material model: modelling liquid and vapour transport properties in porous media. Int. J. Heat Mass Transf. 53, 286–296 (2010)

    Article  Google Scholar 

  • Vervoort, R.W., Cattle, S.R.: Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 272, 39–49 (2003)

    Article  Google Scholar 

  • Weres, J., Olek, W.: Inverse finite element analysis to technological processes of heat and mass transport in agricultural and forest products. Dry. Technol. 23–8, 1737–1750 (2005)

    Article  Google Scholar 

  • Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv. Heat Transf. 54, 13.119-13.203 (1977)

  • Zaknoune, A., Chauvelon, P., Glouannec, P., Salagnac, P., Collet, F.: Experimental study of hemp concrete block drying. In: A. S. Mujumdar (Series ed.) 16th International Drying Symposium, B., Versailles, pp. 894–900 (2008)

  • Zaknoune, A., Glouannec, P., Salagnac, P.: Estimation of moisture transport coefficients in porous material using experimental drying kinetics. Heat Mass Transf. 48, 205–215 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Brittany Regional Council, the General council of Morbihan and the National Research Agency of France (ANR) for their financial contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Glouannec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaknoune, A., Glouannec, P. & Salagnac, P. Identification of the Liquid and Vapour Transport Parameters of an Ecological Building Material in Its Early Stages. Transp Porous Med 98, 589–613 (2013). https://doi.org/10.1007/s11242-013-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0162-x

Keywords

Navigation