Skip to main content
Log in

In vitro propagation and cryopreservation of the medicinal species Hovenia dulcis Thunb. (Rhamnaceae)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study describes in vitro propagation and cryopreservation of Hovenia dulcis, a woody species used in traditional medicine. Stem and leaf explants from axenic seedlings were cultivated on Murashige and Skoog (MS) medium containing 6-benzyladenine (BA) and kinetin (KIN) alone or in combination (0.1, 0.2, 0.5 mg L−1). For in vitro propagation, rates of regeneration (percentage of responsive explants) and proliferation (multiplication capacity of explant-derived shoots) were evaluated after 30 days and five subcultures, respectively. For cryopreservation by V Cryo-plate technique, shoot tips were excised from microcuttings cultured from in vitro-grown stock plants, or excised directly from axillary shoots of stock plants. The shoot tips were precultured in 0.3 M sucrose (24 h), exposed to loading (20 min) and to PVS2 (0–150 min) before storage in liquid nitrogen. The regrowth was assessed by plating of shoot tips on recovery medium (MS with BA + KIN), with or without a sterile filter paper over the culture medium. Cryopreservation was evaluated by survival (4-weeks) and recovery (8-weeks). The highest regeneration by direct organogenesis (100%) were reached on medium with BA + KIN (0.5 mg L−1 each). Shoots maintained multiplication capacity, showing the highest proliferation (87%) in the presence of BA. Shoot elongation and rooting were achieved on growth regulator-free MS. The most efficient cryopreservation protocol (68% survival and 62% recovery) applied exposure to PVS2 (120 min), and recovery on medium containing BA + KIN (0.5 mg L−1 each) with filter paper. The propagation and cryopreservation of H. dulcis may contribute to its conservation and that of other woody species.

Key message

This study aimed to establish an in vitro propagation methodology and the first cryopreservation protocol for Hovenia dulcis, a woody species of commercial, medicinal and nutraceutical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

KIN:

Kinetin

PVS2:

Plant Vitrification Solution 2

MS:

Murashige and Skoog (1962) Medium

LN:

Liquid Nitrogen

V Cryo-plate:

Vitrification Cryo-plate technique

References

  • An C (2019) In Vitro propagation of commonly used medicinal trees in Korea. J For Environ Sci 35:272–280

    Google Scholar 

  • Antony JJJ, Keng CL, Rathinam X, Marimuthu S, Subramaniam S (2011) Effect of preculture and PVS2 incubation conditions followed by histological analysis in the cryopreserved PLBs of Dendrobium Bobby Messina orchid. Aust J Crop Sci 5:1557–1564

    CAS  Google Scholar 

  • Aros D, Vásquez M, Rivas C, Loreto M (2017) An efficient method for in vitro propagation of Alstroemeria pallida Graham rhizomes. Chil J Agri Res 77:95–99

    Google Scholar 

  • Benson EE (2008) Cryopreservation theory. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 15–32

    Google Scholar 

  • Benson EE, Harding K (2012) Cryopreservation of shoot tips and meristems: an overview of contemporary methodologies. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology. Humana Press, Totowa, pp 191–226

    Google Scholar 

  • Bettoni JC, Souza JA, Volk GM, Dalla Costa M, da Silva FN, Kretzschmar AA (2019a) Eradication of latent viruses from apple cultivar ‘Monalisa’shoot tips using droplet-vitrification cryotherapy. Sci Hortic 250:12–18

    Google Scholar 

  • Bettoni JC, Kretzschmar AA, Bonnart R, Shepherd A, Volk GM (2019b) Cryopreservation of 12 Vitis species using apical shoot tips derived from plants grown in vitro. HortScience 54:976–981

    CAS  Google Scholar 

  • Bettoni JC, Bonnart R, Shepherd AN, Kretzschmar AA, Volk GM (2019c) Modifications to a Vitis shoot tip cryopreservation procedure: effect of shoot tip size and use of cryoplates. Cryoletters 40:103–112

    PubMed  Google Scholar 

  • Beyl CA (2000) Getting started with tissue culture—media preparation, sterile technique, and laboratory equipment. In: Trigiano RN, Gray DJ (eds) Plant tissue culture concepts and laboratory exercises, 2nd edn. CRC Press, Boca Raton, pp 21–38

    Google Scholar 

  • Bonga JM, Klimaszewska KK, Von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org Cult 100:241–254

    Google Scholar 

  • Castro TC, Pelliccione VLB, Figueiredo MR, Soares RODA, Bozza MT, Viana VRC, Albarello N, Figueiredo SLF (2002) Atividade antineoplásica e tripanocida de Hovenia dulcis Thunb. cultivada in vivo e in vitro. Braz J Pharmacog 12:96–99

    Google Scholar 

  • Castro TC, Barbosa KC, Albarello N, Figueiredo SFL (2005) Characterization of pseudofruits, fruits, seeds and plantules obtained from in vivo and in vitro germination of Hovenia dulcis (Rhamnaceae) medicinal species. Rev Cubana Plant Med 10:1–17

    Google Scholar 

  • Castro TC, Simões-Gurgel C, Ribeiro IG, Coelho MGP, Albarello N (2014) Morphological aspects of fruits, seeds, seedlings and in vivo and in vitro germination of species of the genus Cleome. J Seed Sci 36:326–335

    Google Scholar 

  • Charoensub R, Phansiri S, Yongmanitchai W, Sakai A (2003) Routine cryopreservation of in vitro-grown axillary apices of cassava (Manihot esculenta Crantz) by vitrification: importance of a simple mononodal culture. Sci Hortic 98:485–492

    CAS  Google Scholar 

  • Condello E, Caboni E, Andrè E, Piette B, Druart P, Swennen R, Panis B (2011) Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters 32:175–185

    CAS  PubMed  Google Scholar 

  • Cordeiro LS, Simões-Gurgel C, Albarello N, Engelmann F (2015) Cryopreservation of in vitro-grown shoot tips of Cleome rosea Vahl (Cleomaceae) using the V Cryo-Plate technique. In Vitro Cell Dev Biol Plant 51:688–695

    CAS  Google Scholar 

  • Cordeiro LS, Simões-Gurgel C, Albarello N, Engelmann F (2017) Cleomaceae (Cleome rosea Vahl ex DC.), shoot tips, V-cryo-plate method. In: Niino T, Matsumoto T, Yamamoto S-I, Maki S, Tanaka D, Engelmann F (eds) Manual of cryopreservation methods using cryo-plate, 1st edn, vol 1. Plant Tissue Culture and Cryopreservation Group (PTTCCryoG), Jalisco, pp 62–63

    Google Scholar 

  • Corredoira E, Martínez MT, Sanjosé MC, Ballester A (2017) Conservation of hardwood forest species. In: Ahuja MR, Jain SM (eds) Biodiversity and conservation of woody plants, sustainable development and biodiversity, 1st edn. Springer, Cham, pp 421–453

    Google Scholar 

  • Dar RA, Shahnawaz M, Qazi PH (2017) Natural product medicines: a literature update. J Phytopharmacol 6:340–342

    Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (1994) Effect of various sugars and polyols on the tolerance to desiccation and freezing of oil palm polyembryonic cultures. Seed Sci Res 4:307–313

    CAS  Google Scholar 

  • Echeverrigaray S, Mossi AJ, Munari F (1998) Micropropagation of raisin tree (Hovenia dulcis Thunb.) through axillary bud culture. J Plant Biochem Biot 7:99–102

    Google Scholar 

  • Engelmann F (2011a) Cryopreservation of embryos: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture. Methods in molecular biology (methods and protocols), vol 710. Humana Press, Totowa, pp 155–184

    Google Scholar 

  • Engelmann F (2011b) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Google Scholar 

  • Engelmann F (2013) Cryopreservation of clonal crops: a review of key parameters. II Int Symp Plant Cryopreserv 1039:31–39

    Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF (2015) Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology 71:432–441

    CAS  PubMed  Google Scholar 

  • Ford CS, Jones NB, Van Staden J (2000) Optimization of a working cryopreservation protocol for Pinus patula embryogenic tissue. In Vitro Cell Dev Biol Plant 36:366–369

    Google Scholar 

  • Gadelha APR, Vidal F, Castro TC, Lopes CS, Albarello N, Coelho MGP, Figueiredo SFL, Monteiro-Leal LH (2005) In vitro susceptibility of Giardia lamblia to Hovenia dulcis extracts. Parasitol Res 97:399–407

    CAS  PubMed  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture. Springer, Dordrecht, 501p

    Google Scholar 

  • González-Arnao MT, Dolce N, González-Benito ME, Castillo Martínez CR, Cruz-Cruz CA (2017) Approaches for in vitro conservation of woody plants germplasm. In: Ahuja M, Jain S (eds) Biodiversity and conservation of woody plants. Sustainable development and biodiversity, vol 17. Springer, Cham, pp 355–419

    Google Scholar 

  • Goyal Y, Arya HC (1985) Tissue culture of desert trees: II. Clonal multiplication of Zizyphus in vitro. J Plant Physiol 119:399–404

    CAS  Google Scholar 

  • Groover A (2017) Age-related changes in tree growth and physiology. eLS. Wiley, Chichester, pp 1–7

    Google Scholar 

  • Guidini CC, Pinto-Maglio CAF, Lombello RA (2017) Karyotype, rDNA localization and meiotic behavior of Hovenia dulcis Thunb. (Rhamnaceae). Caryologia 70:385–389

    Google Scholar 

  • Halmagyi A, Deliu C, Coste A (2005) Plant regrowth from potato shoot tips cryopreserved by a combined vitrification-droplet method. CryoLetters 26:313–322

    CAS  PubMed  Google Scholar 

  • Hendges CD, Fortes VB, Dechoum MS (2012) Consumption of the invasive alien species Hovenia dulcis Thunb. (Rhamnaceae) by Sapajus nigritus Kerr, 1792 in a protected area in southern Brazil. Rev Bras Zoociências 14:255–260

    Google Scholar 

  • Ibrahim S, Normah MN (2013) The survival of in vitro shoot tips of Garcinia mangostana L. after cryopreservation by vitrification. Plant Growth Regul 70:237–246

    CAS  Google Scholar 

  • Jeong MJ, Song HJ, Park DJ, Min JY, Jo JS, Kim BM, Choi MS (2009) High frequency plant regeneration following abnormal shoot organogenesis in the medicinal tree Hovenia dulcis. Plant Cell Tiss Org Cult 98:59–65

    CAS  Google Scholar 

  • Kaczmarczyk A, Rokka VM, Keller EJ (2011) Potato shoot tip cryopreservation. A review. Potato Res 54:45–79

    Google Scholar 

  • Kulus D (2018) Effects of various preculture, pretreatment, and recovery conditions on the morphogenetic response of cryopreserved Lady Orange chrysanthemum shoot tips. Turk J Biol 42:76–86

    CAS  Google Scholar 

  • Kulus D (2020) Shoot tip cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara using different approaches and evaluation of stability on the molecular, biochemical, and plant architecture levels. Int J Mol Sci 21:3901

    CAS  PubMed Central  Google Scholar 

  • Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species—a review. Sci Hortic 168:88–107

    Google Scholar 

  • Kulus D, Serocka M, Mikuła A (2018) Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of chrysanthemum shoot tips. Acta Sci Pol Hort Cult 17:139–147

    Google Scholar 

  • Kulus D, Muhire JD, Aksoy B (2020) Growth regulation and validation of homogeneity in in vitro-derived bleeding heart by molecular markers and spectral analysis of pigments. J Plant Growth Reg. https://doi.org/10.1007/s00344-020-10204-2

    Article  Google Scholar 

  • Lambardi M, Shaarawi S (2016) Importance of in vitro culture for developing cryopreservation strategies of woody plants. Acta Hortic 1187:177–188

    Google Scholar 

  • Lee Y-G, Popova E, Cui H-Y, Kim H-H, Park S-U, Bae C-H, Lee S-C, Engelmann L (2011) Improved cryopreservation of Chrysanthemum (Chrysanthemum morifolium) using droplet-vitrification. CryoLetters 32:487–497

    CAS  PubMed  Google Scholar 

  • Li G, Min BS, Zheng C, Lee J, Oh SR, Ahn KS, Lee HK (2005) Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Arch Pharm Res 28:804–809

    CAS  PubMed  Google Scholar 

  • Li J-W, Ozudogru EA, Li J, Wang M-R, Bi W-L, Lambardi M, Wang Q-C (2018) Cryobiotechnology of forest trees: recent advances and future prospects. Biodivers Conserv 27:795–814

    Google Scholar 

  • Lim TK (2013) Hovenia dulcis. In: Lim TK (ed) Edible medicinal and non-medicinal plants: v. 5, fruits. Springer, Dordrecht, pp 568–577

    Google Scholar 

  • Lynch PT, Siddika A, Mehra A, Benelli C, Lambardi M (2014) Cryopreservation of quince (Cydonia oblonga Mill.). CryoLetters 35:188–196

    CAS  PubMed  Google Scholar 

  • Mandal BB, Dixit-Sharma S (2007) Cryopreservation of in vitro shoot tips of Dioscorea deltoidea Wall., an endangered medicinal plant: effect of cryogenic procedure and storage duration. CryoLetters 28:461–470

    Google Scholar 

  • Manole-Paunescu A (2014) Biotechnology for endangered plant conservation. In: Ahuja MR, Ramawat KG (eds) Biotechnology and biodiversity, sustainable development and biodiversity, 4th edn. Springer, Cham, pp 181–202

    Google Scholar 

  • Marco-Medina A, Casas JL, Swennen R, Panis B (2010) Cryopreservation of Thymus moroderi by droplet vitrification. CryoLetters 31:14–23

    CAS  PubMed  Google Scholar 

  • Marković Z, Chatelet P, Preiner D, Sylvestre I, Kontić JK, Engelmann F (2014) Effect of shooting medium and source of material on grapevine (Vitis vinifera L.) shoot tip recovery after cryopreservation. CryoLetters 35:40–47

    PubMed  Google Scholar 

  • Maślanka M, Panis B, Bach A (2013) Cryopreservation of Galanthus elwesii Hook. apical meristems by droplet vitrification. CryoLetters 34:1–9

    PubMed  Google Scholar 

  • Mathew L, McLachlan A, Jibran R, Burritt DJ, Pathirana R (2018) Cold, antioxidant and osmotic pre-treatments maintain the structural integrity of meristematic cells and improve plant regeneration in cryopreserved kiwifruit shoot tips. Protoplasma 255:1065–1077

    CAS  PubMed  Google Scholar 

  • Mathur N, Ramawat KG, Nandwani D (1995) Rapid in vitro multiplication of jujube through mature stem explants. Plant Cell Tiss Org Cult 43:75–77

    Google Scholar 

  • Matsumoto T, Yamamoto S, Fukui K, Rafique T, Engelmann F, Niino T (2015) Cryopreservation of Persimmon shoot tips from dormant buds using the D cryo-plate technique. Hort J 84:106–110

    CAS  Google Scholar 

  • Menon A, Funnekotter B, Kaczmarczyk A, Bunn E, Turner S, Mancera RL (2012) Cryopreservation of Lomandra sonderi (Asparagaceae) shoot tips using droplet-vitrification. CryoLetters 33:259–270

    CAS  PubMed  Google Scholar 

  • Morales P, Maieves HP, Dias MI, Calhella RC, Sánchez-Mata MC, Santos-Buelga C, Barros L, Ferreira ICFR (2017) Hovenia dulcis Thunb. pseudofruits as functional foods: phytochemicals and bioactive properties in different maturity stages. J Funct Foods 29:37–45

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Niino T, Watanabe K, Nohara N, Rafique T, Yamamoto SI, Fukui K, Engelmann F (2014) Cryopreservation of mat rush lateral buds by air dehydration using aluminium cryo-plate. Plant Biotechnol 31:281–287

    CAS  Google Scholar 

  • Niino T, Yamamoto S, Matsumoto T, Engelmann F, Arizaga MV, Tanaka D (2019) Development of V and D cryo-plate methods as effective protocols for cryobanking. Acta Hortic 1234:249–262

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    CAS  Google Scholar 

  • Normah MN, Sulong N, Reed BM (2019) Cryopreservation of shoot tips of recalcitrant and tropical species: advances and strategies. Cryobiology 87:1–14

    CAS  PubMed  Google Scholar 

  • O’Brien C, Hiti-Bandaralage J, Folgado R, Lahmeyer S, Hayward A, Folsom J, Mitter N (2020) A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): first critical step in developing a cryopreservation protocol. Sci Hortic 266:109–305

    Google Scholar 

  • Panis B (2019) Sixty years of plant cryopreservation: from freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic 1234:1–8

    Google Scholar 

  • Panta A, Panis B, Ynouye C, Swennew R, Roca W (2014) Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters 35:255–266

    CAS  PubMed  Google Scholar 

  • Park D-J, Kang Y-M, Jung H-N, Min J-Y, Kim Y-D, Karigar CS, Choi M-S (2006) Rapid micropropagation of Hovenia ducis Thunb. through in vitro stem nodal cultures. J Korean For Soc 95:155–159

    Google Scholar 

  • Park K, Yoon HJ, Imm JY, Go GW (2019) Hovenia dulcis extract attenuates high-fat diet-induced hepatic lipid accumulation and hypertriglyceridemia in C57BL/6 mice. J Med Food 22:74–80

    CAS  PubMed  Google Scholar 

  • Pathirana R, McLachlan A, Hedderley D, Panis B, Carimi F (2016) Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet-vitrification. Acta Phsiol Plant 38:12

    Google Scholar 

  • Pereira GA, Santaella MB, Alves LMSM, Silva EC, Flenga AIS, Santos DMA (2018) Concentrations of 6-benzylaminopurine (BAP) in micropropagation of banana ‘Farta Velhaco’(AAB). Comun Sci 9:58–63

    Google Scholar 

  • Pettinelli JA, Soares BO, Cantelmo L, Garcia RO, Mansur E, Engelmann F, Gagliardi RF (2017) Cryopreservation of somatic embryos from Petiveria alliacea L. by different techniques based on vitrification. In Vitro Cell Dev Biol Plant 53:339–345

    CAS  Google Scholar 

  • Pettinelli JA, Soares BO, Collin M, Mansur EA, Engelmann F, Gagliardi RF (2020) Cryotolerance of somatic embryos of guinea (Petiveria alliacea) to V-cryoplate technique and histological analysis of their structural integrity. Acta Physiol Plant 42:1–10

    Google Scholar 

  • Prudente DO, Paiva R, Paiva PDO, Silva LC (2016) Cryopreservation of shoot tips excised from zygotic embryos of Araucaria angustifolia Kuntze. XXIX Int Hortic Congr Hortic Sustain Lives Livelihoods Landsc 1113:257–264

    Google Scholar 

  • Rantala S, Kaseva J, Karhu S, Veteläinen M, Uosukainen M, Häggman H (2019) Cryopreservation of Ribes nigrum (L.) dormant buds: recovery via in vitro culture to the field. Plant Cell Tiss Org Cult 138:109–119

    Google Scholar 

  • Rathore TS, Singh RP, Deora NS, Shekhwat NS (1992) Clonal propagation of Zyzhiphus species through tissue culture. Sci Hortic 51:165–168

    CAS  Google Scholar 

  • Read PE, Bavougian CM (2012) In vitro rejuvenation of woody species. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plant. Humana Press, Totowa, pp 383–395

    Google Scholar 

  • Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York

    Google Scholar 

  • Ribeiro IG, Gayer CRM, Castro TC, Coelho MGP, Albarello N (2015) Compact callus cultures and evaluation of the antioxidant activity of Hovenia dulcis Thunb. (Rhamnaceae) under in vivo and in vitro culture conditions. J Med Plant Res 9:8–15

    Google Scholar 

  • Rojas-Martínez L, Visser RG, De Klerk GJ (2010) The hyperhydricity syndrome: waterlogging of plant tissues as a major cause. Propag Ornam Plants 10:169–175

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    CAS  PubMed  Google Scholar 

  • Sant R, Panis B, Taylor M, Tyagi A (2008) Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tiss Org Cult 92:107–111

    Google Scholar 

  • Schaller EG, Bishopp A, Kieberc JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt AD, Castellani TT, Dechoum MS (2020) Biotic and abiotic changes in subtropical seasonal deciduous forest associated with invasion by Hovenia dulcis Thunb. (Rhamnaceae). Biol Invasions 22:293–306

    Google Scholar 

  • Serafim CM, Campos AS, Melo PDS, Castro ACR, Carvalho A (2018) Types and concentrations of cytokinins in the micropropagation of Anthurium maricense. Braz J Agrarian Environ Sci 12:117–123

    Google Scholar 

  • Sulong N, Shahabudin NF, Noor NM (2018) Critical vitrification steps towards survival of Garcinia hombroniana (Clusiaceae) shoot tips after cryopreservation. Rev Biol Trop 66:1314–1323

    Google Scholar 

  • Tanaka D, Yamamoto S, Matsumoto T, Arizaga MV, Niino T (2019) Development of effective cryopreservation protocols using aluminium cryo-plates for mulberry. Acta Hortic 1234:263–268

    Google Scholar 

  • Tsai SF, Yeh SD, Chan CF, Liaw SI (2009) High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell Tiss Org Cult 98:157–164

    CAS  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    CAS  PubMed  Google Scholar 

  • Vianna MG, Garcia RO, Mansur E, Engelmann F, Pacheco G (2019) Oxidative stress during the cryopreservation of Passiflora suberosa L. shoot tips using the V-Cryo-plate technique: determination of the critical stages of the protocol. Plant Cell Tiss Org Cult 139:369–379

    CAS  Google Scholar 

  • Vicente S, Nieto AB, Hodara K, Castro MA, Alzamora SM (2012) Changes in structure, rheology, and water mobility of apple tissue induced by osmotic dehydration with glucose or trehalose. Food Bioprocess Tech 5:3075–3089

    CAS  Google Scholar 

  • Vilardo AFRM, Mendonça TF, Engelmann F, Cordeiro LS, Albarello N, Simões-Gurgel C (2019) Cryopreservation of in vitro-grown shoot tips of the medicinal species Cleome spinosa (Cleomaceae) applying vitrification-based techniques. CryoLetters 40:237–246

    PubMed  Google Scholar 

  • Volk GM, Jenderek M, Chen K (2020) Cryopreservation of dormant apple buds. In: Volk GM (Eds.) Training in plant genetic resources: cryopreservation of clonal propagules. Fort Collins, Colorado: Colorado State University. https://colostate.pressbooks.pub/clonalcryopreservation/chapter/apple-dormant-bud-cryopreservation/. Accessed 26 July 2020

  • Vollmer R, Villagaray R, Castro M, Anglin NL, Ellis D (2019) Cryopreserved potato shoot tips showed genotype-specific response to sucrose concentration in rewarming solution (RS). Plant Cell Tiss Org Cult 136:353–363

    CAS  Google Scholar 

  • Vujović T, Chatelet P, Ružić D, Engelmann F (2015) Cryopreservation of Prunus spp. using aluminium cryo-plates. Sci Hortic 195:173–182

    Google Scholar 

  • Wang Q, Li P, Batuman Ö, Gafny R, Mawassi M (2003) Effect of benzyladenine on recovery of cryopreserved shoot tips of grapevine and citrus cultured in vitro. CryoLetters 24:293–302

    PubMed  Google Scholar 

  • Wang M, Zhu P, Jiang C, Ma L, Zhang Z, Zeng X (2012) Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem Toxicol 50:2964–2970

    CAS  PubMed  Google Scholar 

  • Wang B, Li J-W, Zhang Z-B, Wang R-R, Ma Y-L, Blystad D-R, Keller EJ, Wang Q-C (2014a) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 184:47–55

    CAS  PubMed  Google Scholar 

  • Wang R-R, Gao X-X, Chen L, Huo L-Q, Lib M-F, Wang Q-C (2014b) Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Sci Hortic 176:330–339

    CAS  Google Scholar 

  • Wang RR, Mou HQ, Gao XX, Chen L, Li MF, Wang QC (2015) Cryopreservation for eradication of Jujube witches’ broom phytoplasma from Chinese jujube (Ziziphus jujuba). Ann Appl Biol 166:218–228

    Google Scholar 

  • Wang M-R, Hamborg Z, Slimestad R, Elameen A, Blystad DR, Haugslien S, Wang Q-C (2020a) Assessments of rooting, vegetative growth, bulb production, genetic integrity and biochemical compounds in cryopreserved plants of shallot. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-020-01820-7

    Article  Google Scholar 

  • Wang M-R, Lambardi M, Engelmann F, Pathirana R, Panis B, Volk GM, Wang Q-C (2020b) Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-020-01770-0

    Article  Google Scholar 

  • Yamamoto SI, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium Cryo-Plates. CryoLetters 32:256–265

    CAS  PubMed  Google Scholar 

  • Yamamoto S-i, Fukui K, Rafique T, Khan NI, Castillo Martinez CR, Sekizawa K, Matsumoto T, Niino T (2012) Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Gen Res 10:14–19

    CAS  Google Scholar 

  • Yang J, Wu S, Li C (2013) High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures. Sci World J 2013:718754

    Google Scholar 

  • Yuniastuti E, Wardani NC, Nandariyah (2016) The effect of explant type and 6-benzyl adenine (BAP) in sapodilla (Achras zapota) micropropagation. Am J Biochem Biotechnol 12:206–213

    CAS  Google Scholar 

  • Zayova E, Vassilevska-Ivanova R, Kraptchev B, Stoeva D (2010) Somaclonal variations through indirect organogenesis in eggplant (Solanum melongena L.). Biol Divers Conserv 3:1–5

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Brazilian Federal Agency for Support and Evaluation of Graduate Education/CAPES (Finance Code 001), the Brazilian Council for Scientific and Technological Development/CNPq and The Carlos Chagas Filho Research Support Foundation/FAPERJ. The authors are grateful to Adriana M. Lanziotti (TCT/FAPERJ) for lab assistance and illustrations of methodology and to Márcio M. Silva for valuable help with graphic design. Special thanks to Dr. Takao Niino (University of Tsukuba, Japan) for the supply of cryo-plates and Dr. Florent Engelmann (Institut de Recherche pour le Développement, France) for introducing the V Cryo-plate methodology to our research group.

Funding

This research is grant aided by the Brazilian Council for Scientific and Technological Development/CNPq (Process 421,538/2016-3) and The Carlos Chagas Filho Research Support Foundation/FAPERJ (E-26/010.001631/2014 and E-26/010.001019/2016).

Author information

Authors and Affiliations

Authors

Contributions

AMS, TCC, LSC, NA, CSG conceived and planned the experiments. AMS, TCC, LSC, TA carried out the experiments. LSC, NA, CSG supervised the work. All authors contributed to the interpretation of the results, wrote, read and approved the manuscript.

Corresponding author

Correspondence to Claudia Simões-Gurgel.

Additional information

Communicated by: Qiao-Chun Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra, A.M., de Castro, T.C., da Silva Cordeiro, L. et al. In vitro propagation and cryopreservation of the medicinal species Hovenia dulcis Thunb. (Rhamnaceae). Plant Cell Tiss Organ Cult 144, 577–591 (2021). https://doi.org/10.1007/s11240-020-01980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01980-6

Keywords

Navigation