Skip to main content
Log in

Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel GV, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Abdallat AM, Ali-Sheikh-Omar MA, Alnemer LM (2015) Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 120:989–1001. doi:10.1007/s11240-014-0652-8

    Article  CAS  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: The future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco OP, Pereira OS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the BRANCHED SILKLESS I gene in maize. Science 298:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Corcuera L E G, Notivol E (2011) Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures. Plos ONE 6:e28772–e28772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortina C, Culiáñezmacià FA (2004) Tomato transformation and transgenic plant production. Plant Cell Tissue Organ Cult 76:269–275

    Article  CAS  Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570

    Article  CAS  Google Scholar 

  • Efeoğlu B, Ekmekçi Y, Çiçek N (2009) Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot 75:34–42

    Article  Google Scholar 

  • Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T et al (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tiss Organ Cult 120:881–902. doi:10.1007/s11240-014-0664-4

    Article  CAS  Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong B, Wang X, Wei M et al (2016) Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell Tiss Organ Cult 124:377–391. doi:10.1007/s11240-015-0901-5

    Article  CAS  Google Scholar 

  • Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618

    Article  CAS  PubMed  Google Scholar 

  • Hamdy A, Ragab R, Scarascia-Mugnozza E (2003) Coping with water scarcity: water saving and increasing water productivity. Irrig Drain 52; 3–20

    Article  Google Scholar 

  • Jenks MA, Hasegawa PM, Jain SM (2007) Advances in molecular breeding toward drought and salt tolerant crops. Environ Manag 141–182

  • Jofuku KD, den Boer BG, Van MM, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marschmartinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42:313–349

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchishinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Lutz KA, Martin C, Khairzada S, Maliga P (2015) Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep 34(10):1849–1856

    Article  CAS  PubMed  Google Scholar 

  • Metwali EMR, Soliman HIA, Fuller MP et al (2015)Improving fruit quality in tomato (Lycopersicum esculentum Mill.) under heat stress by silencing the vis1 gene using small interfering RNA technology. Plant Cell Tiss Organ Cult 121: 153–166. doi:10.1007/s11240-014-0691-1

    Article  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3127

    Article  CAS  PubMed  Google Scholar 

  • Mrema AF, Granhall U, Sennerby-Forsse L (1997) Plant growth, leaf water potential, nitrogenase activity and nodule anatomy in Leucaena leucocephala as affected by water stress and nitrogen availability. Trees 12:42–48

    Google Scholar 

  • Na YU, Guo XY, Jiao TQ, Zhu JB (2010) Transformation of ApHRD gene and drought-tolerance identification of transgenic plants in tobacco. Acta Bot Boreal Occident Sin 30:2385–2393

    Google Scholar 

  • Nakano T, Suzuki K (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 139:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. Springer, Dordrecht

    Book  Google Scholar 

  • Shah SH, Ali S, Jan SA et al. Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.) (2015). Plant Cell Tiss Organ Cult 120: 1139–1157. doi:10.1007/s11240-014-0670-6

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia Pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wu YH (1994) Two new species of Chinese Cheistolea. Acta Phytotaxon Sin 32(6):489–503

    Google Scholar 

  • Yamaguchishinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–49

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tang N, Xian Z et al (2015) Two SnRK2 protein kinases genes play a negative regulatory role in the osmotic stress response in tomato. Plant Cell Tiss Organ Cult 122:421–434. doi:10.1007/s11240-015-0779-2

    Article  CAS  Google Scholar 

  • Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JQ, Zhou YH, Huang LF, Allen DJ (2002) Chill-induced inhibition of photosynthesis: genotypic variation within Cucumis sativus. Plant Cell. Physiology 43:1182–1188

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yan J, Yang Y et al (2015) Overexpression of tomato mitogen-activated protein kinase SlMPK3 in tobacco increases tolerance to low temperature stress. Plant Cell Tiss Organ Cult 121:21–34. doi:10.1007/s11240-014-0675-1

    Article  CAS  Google Scholar 

  • Zhang JZ, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to Engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Jiang Y, Lu X (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wu L, Wan L, Fang L, Dai L, Li D, Zhang Z, Huang R (2010a) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Trans Res 19:809–818

    Article  CAS  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010b) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper resulted from the National Natural Sciences Foundation of China support program (No.31160049), (No. 31301058) and the specialized research fund for the doctoral program of higher education (20130072120025), Tongji University Young Talents Program (No. 1500219048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Zhu.

Ethics declarations

Conflict of interest

None.

Additional information

Xinyong Guo and Li Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, L., Zhu, J. et al. Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants. Plant Cell Tiss Organ Cult 129, 469–481 (2017). https://doi.org/10.1007/s11240-017-1192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1192-9

Keywords

Navigation