Skip to main content
Log in

Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

bZIP:

Basic region/leucine zipper

WT:

Wild type

CaMV:

Cauliflower mosaic virus

ORF:

Open reading frame

RT-PCR:

Reverse transcription-polymerase chain reaction

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

MS:

Murashige and Skoog

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

ELISA:

Enzyme-linked immunosorbent assay

NBT:

Nitro blue tetrazolium

DAB:

Diaminobenzidine

ROS:

Reactive oxygen species

MV:

Methylviologen

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

H2O2 :

Hydrogen peroxide

O2 :

Superoxide anion

ABA:

Abscisic acid

cDNA:

Complementary deoxyribonucleic acid

FW:

Fresh weight

EDTA:

Ethylene diamine tetraacetic acid

NCED3:

9-Cis-epoxycarotenoid dioxygenase

RD:

Responsive to dehydration

KIN:

Protein kinase

ERD:

Early responsive to dehydration

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Lchinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, Liu YG, Zhang Y, Zhang XS (2014) Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 26:1053–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3:e2944

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening: cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanda SS, Sethi GS (1998) Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39–47

    Article  Google Scholar 

  • Ferreira RB, Monteiro SS, Piçarra-Pereira MA, Teixeira AR (2004) Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotech 22(4):168–173

    Article  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17(12):3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12(6):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Zhang HJ, Guo CL, Cheng CX, Guo RR, Mao LY, Fei ZJ, Wang XP (2014) Evolutionary and expression analyses of basic zipper transcription factors in the highly homozygous model grape PN40024 (Vitis vinifera L.). Plant Mol Biol Rep 32:1085–1102

    Article  CAS  Google Scholar 

  • García MNM, Giammaria V, Grandellis C, Téllez-Iñón MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235:761–778

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60:207–217

    Article  CAS  PubMed  Google Scholar 

  • Guo RR, Zhao J, Wang XH, Guo CL, Li Z, Wang YJ, Wang XP (2014) Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Org Cul 121:275–287

    Article  Google Scholar 

  • He PC, Wang YJ, Wang G, Ren Z, He C (1991) The study on the disease-resistance of Vitis wild species originated in China. Sci Agric Sin 24:50–56 (in Chinese)

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, Chen H, Deng XW (2012) Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 24:4590–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cisepoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang J, Cho D, Park J, Kim S (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophy Res Commun 412:150–154

    Article  CAS  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  CAS  PubMed  Google Scholar 

  • Liu CT, Wu YB, Wang XP (2012a) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH (2012b) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Chen NN, Chen F, Cai B, Santo SD, Tornielli GB, Pezzotti M, Cheng ZM (2014) Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genom 15:281

    Article  Google Scholar 

  • Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281(31):22190–22199

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti MB, Maskin L, Gudesblat G, García SC, Iusem ND (2006) ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Plant Physiol 127:111–118

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erd1, encoding a chloroplast-targeted CIp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12(4):851–861

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant, Cell Environ 33:2191–2208

    Article  CAS  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompelli MF, Barata-Luís R, Vitorino HS, Gonçalves ER, Rolim EV, Santos MG, Almeida-Cortez JS, Ferreira VM, Lemos EE, Endres L (2010) Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215

    Article  CAS  Google Scholar 

  • Rock CD (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  • Saleki R, Young PG, Lefebvre DD (1993) Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 101:839–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Silveira AB, Gauer L, Tomaz JP, Cardoso PR, Carmello-Guerreiro S, Vincentz M (2007) The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development. Plant Sci 172(6):1148–1156

    Article  CAS  Google Scholar 

  • Slade P (1966) The fate of paraquat applied to plants. Weed Res 6:158–167

    Article  CAS  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf sense cence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, Srivastava A, Tsimilli-Michael M (2002) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus U, Pathre M (eds) Probing photosynthesis: mechanism, regulation and adapation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Tak H, Mhatre M (2013) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250:333–345

    Article  CAS  PubMed  Google Scholar 

  • Tang LL, Cai H, Ji W, Luo X, Wang ZY, Wu J, Wang XD, Cui L, Wang Y, Zhu YM, Bai X (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53:212–231

    Article  CAS  PubMed  Google Scholar 

  • Wei KF, Chen J, Wang YM, Chen YH, Chen SX, Lin YN, Pan S, Zhong XJ, Xie DX (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H (2004) Study on drought resistance of grape rootstocks and varieties. Thesis for Master’s Degree. Shandong Agricultural University, Tai’an, Shandong, China

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Hou HM, Singer SD, Yan XX, Guo RR, Wang XP (2014) The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Org Cult 118:571–582

    Article  CAS  Google Scholar 

  • Yang YZ (2003) Identincation of drought resistanee and RAPD maker slinked to drought resistance genes in chinese wild spesies. Thesis for Master’s Degree. Northwest A&F University, Yangling, Shaanxi, China

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Wang YJ, Wang XP, Yang KQ, Yang JX (2003) An improved method for rapidly extracting total RNA from Vitis. Fruit Sci 53:771–787

    Google Scholar 

  • Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu YX, Xu Y, Chapman S, Love AJ, Xia T (2012a) A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell Tissue Org Cult 110:189–200

    Article  CAS  Google Scholar 

  • Zhang LC, Zhao GY, Xia C, Jia JZ, Liu X, Kong XY (2012b) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Zhang LC, Xia C, Zhao GY, Liu J, Jia JZ, Kong XY (2014) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plantarum 153:538–554

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Bio 53:247–273

    Article  CAS  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31272136), as well as the Program for Innovative Research Team of Grape Germplasm Resources and Breeding (2013KCT-25). We thank PlantScribe (www.plantscribe.com) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, M., Wang, X., Huang, L. et al. Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses. Plant Cell Tiss Organ Cult 125, 537–551 (2016). https://doi.org/10.1007/s11240-016-0969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0969-6

Keywords

Navigation