Skip to main content

Advertisement

Log in

Azospirillum brasilense enhances in vitro rhizogenesis of Handroanthus impetiginosus (pink lapacho) in different culture media

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Handroanthus impetiginosus is an ornamental tree used in urban forestry programs and landscaping, produces good timber, and has medicinal qualities. Clearing of natural forest has been increased and motivates to find techniques that optimize rhizogenesis to ex situ conservation and reforestation.

Aims

This study evaluated Azospirillum brasilense as an enhancer of in vitro rooting of H. impetiginosus under different indole-3-butyric acid (IBA) pulse inductions and media formulations.

Methods

In vitro shoots were induced with 0 to 50-μM IBA pulse for 3 days, transferred to two half-strength media (Murashige and Skoog salts with Gamborg’s vitamins [MSG] and woody plant medium), and inoculated or not with A. brasilense Cd or Az39 strains.

Results

The statistic response surface methodology determined that both A. brasilense strains decreased auxin requirement for rooting up to 49 % in half-strength MSG. In this medium, Cd strain with 30-μM IBA pulse produced the 98 % of rooting shoots 21 days before uninoculated plants induced with the same IBA pulse. Also, the biometric parameter index increased from 127 to 286 % in shoots inoculated and induced with 0 to 30 μM IBA, relative to uninoculated.

Conclusion

Our results show that biofertilization with A. brasilense significantly promotes in vitro rooting of H. impetiginosus decreasing auxin requirements and micropropagation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. doi:10.1016/S0065-2113(10)08002-8

    Article  CAS  Google Scholar 

  • Bashan Y, Alcaraz-Melendez L, Toledo G (1992) Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense. Symbiosis 13:217–228

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi:10.1139/W04-035

    Article  CAS  PubMed  Google Scholar 

  • Carletti SM, Llorente BE, Rodríguez Cáceres EA, Tandecarz JS (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotechnol 4:165–174

    Google Scholar 

  • Carley HE, Watson RD (1966) A new gravimetric method for estimating root-surface areas. Soil Sci 102:289–291

    Article  Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. doi:10.1016/j.ejsobi.2008.08.005

    Article  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108. doi:10.1111/j.1574-6968.2011.02407.x

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • George EF, Hall M, de Klerk G-J (2008) Plant propagation by tissue culture 3rd Edition. Volume 1. The background. Springer, The Netherlands, pp 65–173. doi:10.1007/978-1-4020-5005-3

    Google Scholar 

  • González-Rodríguez J, Ramírez-Garduza F, Robert M, O’Connor-Sánchez A, Peña-Ramírez Y (2010) Adventitious shoot induction from adult tissues of the tropical timber tree yellow Ipé primavera (Tabebuia donnell-smithii; rose [bignoniaceae]). In Vitro Cell Dev Biol Plant 46:411–421. doi:10.1007/s11627-010-9304-9

    Article  Google Scholar 

  • Justiniano MJ, Fredericksen TS, Nash D (2000) Ecología y silvicultura de especies menos conocidas—Tajibos o lapachos (Tabebuia spp). Editora El País, Santa Cruz, Bolivia, p 60

    Google Scholar 

  • Larraburu EE, Carletti SM, Rodríguez Cáceres EA, Llorente BE (2007) Micropropagation of photinia employing rhizobacteria to promote root development. Plant Cell Rep 26:711–717. doi:10.1007/s00299-006-0279-2

    Article  CAS  PubMed  Google Scholar 

  • Larraburu EE, Apóstolo NM, Llorente BE (2010) Anatomy and morphology of photinia (Photinia × fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 24:635–642. doi:10.1007/s00468-010-0433-x

    Article  Google Scholar 

  • Larraburu EE, Apóstolo NM, Llorente BE (2012) In vitro propagation of pink lapacho: response surface methodology and factorial analysis for optimisation of medium components. Int J Forest Res 318258:9. doi:10.1155/2012/318258

    Google Scholar 

  • Llorente BE, Apóstolo NM (1998) Effect of different growth regulators and genotype on in vitro propagation of jojoba. N Z J Crop Hortic Sci 26:55–62. doi:10.1080/01140671.1998.9514040

    Article  CAS  Google Scholar 

  • Llorente BE, Larraburu EE (2013) In vitro propagation of fraser photinia using Azospirillum-mediated root development. In: Lambardi M, Ozudogru A, Jain S (eds) Protocols for micropropagation of selected economically-important horticultural plants. Methods in molecular biology. Humana Press, New York, pp 245–258. doi:10.1007/978-1-62703-074-8_19

    Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Prop Soc 30:421–426

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero M, Masciarelli O, Penna C, Ruiz O, Cassan F, Luna M (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150. doi:10.1007/s00253-007-0909-9

    Article  CAS  PubMed  Google Scholar 

  • Pijut PM, Beasley RR, Lawson SS, Palla KJ, Stevens ME, Wang Y (2012) In vitro propagation of tropical hardwood tree species-a review (2001–2011). Propag Ornam Plants 12:25–51

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. Accessed 10 Oct 2013

  • Rodríguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Russo A, Carrozza GP, Vettori L, Felici C, Cinelli F, Toffanin A (2012) Plant beneficial microbes and their application in plant biotechnology. In: Agbo EC (ed) Innovations in biotechnology., pp 57–72. doi:10.5772/31466, InTech, ISBN: 978-953-51-0096-6

    Google Scholar 

  • SPSS Inc. (2003) SPSS for Windows, Version 12.0. Chicago, SPSS Inc.

  • Suarez IE, Jarma AJ, Avila M (2006) Development of an in vitro propagation protocol for roble (Tabebuia rosea Bertol DC). Temas Agrarios 11:52–62

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, Fifth Edition, Sinauer Associates, 782 pages

  • Tetsumura T, Matsumoto Y, Sato M, Honsho C, Yamashita K, Komatsu H, Sugimoto Y, Kunitake H (2008) Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Sci Hortic 119:72–74. doi:10.1016/j.scienta.2008.06.028

    Article  CAS  Google Scholar 

  • Vettori L, Russo A, Felici C, Fiaschi G, Morini S, Toffanin A (2010) Improving micropropagation: effect of Azospirillum brasilense Sp245 on acclimatization of rootstocks of fruit tree. J Plant Interact 5:249–259. doi:10.1080/17429145.2010.511280

    Article  Google Scholar 

  • Zhao D-Y, Tian Q-Y, Li L-H, Zhang W-H (2007) Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann Bot 100:497–503. doi:10.1093/aob/mcm142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the Department of Basic Sciences, National University of Luján, Argentina. Ezequiel Larraburu is a doctoral student in Applied Sciences at the National University of Luján.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta E. Llorente.

Additional information

Handling Editor: Douglass Jacobs

Contribution of the co-authors

Ezequiel Larraburu and Berta Llorente conceived and designed research and then analyzed the obtained data. Ezequiel Larraburu conducted experiments. Berta Llorente supervised the work and wrote the manuscript. Both authors read and approved the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larraburu, E.E., Llorente, B.E. Azospirillum brasilense enhances in vitro rhizogenesis of Handroanthus impetiginosus (pink lapacho) in different culture media. Annals of Forest Science 72, 219–229 (2015). https://doi.org/10.1007/s13595-014-0418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-014-0418-9

Keywords

Navigation