Skip to main content
Log in

Adventitious Rooting and Browning are Differentially Controlled by Auxin in Rooting-Recalcitrant Elegia capensis (Burm. f.) Schelpe

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Industrial propagation of horticultural species involves adventitious root (AR) induction, which is difficult to establish in rooting-recalcitrant species. One of these recalcitrant species is Elegia capensis (Burm. f.) Schelpe. This monocotyledonous species was used to investigate the correlation between tissue browning and AR formation. To evaluate the root-inducing potential of various auxin treatments, a test system using stem segments of in vitro grown Elegia shoots was developed. In addition to exogenous auxin treatments, the effect of more sucrose in the medium and the effect of different light quality were evaluated. The auxins IAA, IBA, NAA, and 2,4-D did not induce roots under standard light conditions, which confirmed the strong rooting-recalcitrance of E. capensis. However, in the dark, IBA successfully induced roots in 20–40 % of the segments, depending on the auxin concentration applied. Excised stem segments showed browning upon incubation with auxins. Browning was dependent on auxin type and concentration, yet it did not correlate with the capacity to form roots because AR formation was observed on brown stem segments. We therefore conclude that browning does not cause rooting-recalcitrance in E. capensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agulló-Antón MA, Sanchez-Bravo J, Acosta M, Druege U (2011) Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J Plant Growth Regul 30(1):100–113. doi:10.1007/s00344-010-9174-8

    Article  Google Scholar 

  • Arezki O, Boxus P, Kevers C, Gaspar T (2001) Changes in peroxidase activity, and level of phenolic compounds during light-induced plantlet regeneration from Eucalyptus camaldulensis Dehn. nodes in vitro. Plant Growth Regul 33(3):215–219. doi:10.1023/a:1017579623170

    Article  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126(2):524–535. doi:10.1104/pp.126.2.524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calamar A, de Klerk GJ (2002) Effect of sucrose on adventitious root regeneration in apple. Plant Cell Tissue Organ Cult 70(2):207–212. doi:10.1023/a:1016356123367

    Article  CAS  Google Scholar 

  • da Rocha Corrêa L, Paim DC, Schwambach J, Fett-Neto A (2005) Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul 45(1):63–73. doi:10.1007/s10725-004-6125-z

    Article  Google Scholar 

  • De Klerk GJ, Keppel M, Terbrugge J, Meekes H (1995) Timing of the phases in adventitious root-formation in apple microcuttings. J Exp Bot 46(289):965–972

    Article  Google Scholar 

  • De Klerk GJ, Van der Krieken W, De Jong JC (1999) Review - The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol-Plant 35(3):189–199

    Article  Google Scholar 

  • Druart P, Kevers C, Boxus P, Gaspar T (1982) In vitro promotion of root-formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z Pflanzenphysiol 108(5):429–436

    Article  CAS  Google Scholar 

  • Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85(5):687–701. doi:10.1006/anbo.2000.1132

    Article  CAS  Google Scholar 

  • Druege U, Zerche S, Kadner R (2004) Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94(6):831–842. doi:10.1093/aob/mch210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurence, synthesis, metabolism and transport. Physiol Plant 88(2):382–389. doi:10.1034/j.1399-3054.1993.880224.x

    Article  CAS  Google Scholar 

  • Ferradini N, Famiani F, Proietti P, Stanica F (1996) Influence of growth regulators and light on in vitro shoot regeneration in M.26 apple rootstock. J Hortic Sci 71(6):859–865

    CAS  Google Scholar 

  • Ferreira WD, Suzuki RM, Pescador R, Figueiredo-Ribeiro RDL, Kerbauy GB (2011) Propagation, growth, and carbohydrates of Dendrobium Second Love (Orchidaceae) in vitro as affected by sucrose, light, and dark. In Vitro Cell Dev Biol-Plant 47(3):420–427. doi:10.1007/s11627-010-9311-x

    Article  Google Scholar 

  • Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignon RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21(7):457–464

    Article  CAS  PubMed  Google Scholar 

  • Ford YY, Bonham EC, Cameron RWF, Blake PS, Judd HL, Harrison-Murray RS (2002) Adventitious rooting: examining the role of auxin in an easy- and a difficult-to-root plant. Plant Growth Regul 36(2):149–159. doi:10.1023/a:1015013025513

    Article  CAS  Google Scholar 

  • Haissig BE, Davis TD, Riemenschneider DE (1992) Researching the controls of adventitious rooting. Physiol Plant 84(2):310–317. doi:10.1034/j.1399-3054.1992.840218.x

    Article  CAS  Google Scholar 

  • Huang LC, Lee YL, Huang BL, Kuo CI, Shaw JF (2002) High polyphenol oxidase activity and low titratable acidity in browning bamboo tissue culture. In Vitro Cell Dev Biol-Plant 38(4):358–365. doi:10.1079/ivp2002298

    Article  CAS  Google Scholar 

  • Iacona C, Muleo R (2010) Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt. Sci Hortic 125(4):630–636. doi:10.1016/j.scienta.2010.05.018

    Article  Google Scholar 

  • Jarvis BC, Shaheed AI (1987) Adventitious root formation in relation to irradiance and auxin supply. Biol Plant 29(5):321–333. doi:10.1007/bf02886608

    Article  CAS  Google Scholar 

  • Kurepin L, Haslam T, Lopez-Villalobos A, Oinam G, Yeung E (2011) Adventitious root formation in ornamental plants: II. The role of plant growth regulators. Propag Ornam Plants 11(4):161–171

    Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27(4):969–978

    Article  CAS  Google Scholar 

  • Li MS, Leung DWM (2000) Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. J Plant Growth Regul 19(4):423–428

    Article  CAS  Google Scholar 

  • Li SW, Xue LG, Xu SJ, Feng HY, An LZ (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75(2):230–247. doi:10.1007/s12229-009-9029-9

    Article  Google Scholar 

  • López Arnaldos T, Muñoz R, Ferrer MA, Calderón AA (2001) Changes in phenol content during strawberry (Fragaria x ananassa, cv. Chandler) callus culture. Physiol Plant 113(3):315–322

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32(2–3):219–230. doi:10.1023/a:1010746806891

    Article  Google Scholar 

  • McCown BH (2000) Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell Dev Biol-Plant 36(3):149–154

    Article  Google Scholar 

  • Monteuuis O, Bon MC (2000) Influence of auxins and darkness on in vitro rooting of micropropagated shoots from mature and juvenile Acacia mangium. Plant Cell Tissue Organ Cult 63(3):173–177. doi:10.1023/a:1010611126950

    Article  CAS  Google Scholar 

  • Nissen SJ, Sutter EG (1990) Stability of IAA and IBA in nutrient medium to several tissue-culture procedures. HortScience 25(7):800–802

    CAS  Google Scholar 

  • Ozyigit II (2008) Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. Afr J Biotechnol 7(8):1145–1150

    CAS  Google Scholar 

  • Ozyigit II, Kahraman MV, Ercan O (2007) Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr J Biotechnol 6(1):3–8

    CAS  Google Scholar 

  • Park SY, Shin KS, Paek KY (2006) Increased ethylene and decreased phenolic compounds stimulate somatic embryo regeneration in leaf thin section cultures of Doritaenopsis hybrid. J Plant Biol 49(5):358–363

    Article  CAS  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12(12):556–563. doi:10.1016/j.tplants.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MC, San-Jose MC, Ballester A, Vieitez AM (1996) Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol 16(8):673–680

    Article  PubMed  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460. doi:10.1016/j.plantsci.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140(1):349–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4(3):477–486. doi:10.1093/mp/ssr006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Culler AH, Cohen JD, Bartel B (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol 153(4):1577–1586. doi:10.1104/pp.110.157461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Wheeler DL, Christensen SE, Berens JC, Cohen JD, Rampey RA, Bartel B (2011) Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell 23(3):984–999. doi:10.1105/tpc.111.083071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116(2):83–91. doi:10.1007/s10265-002-0074-2

    CAS  PubMed  Google Scholar 

  • Tereso S, Miguel CM, Mascarenhas M, Roque A, Trindade H, Maroco J, Oliveira MM (2008) Improved in vitro rooting of Prunus dulcis Mill. cultivars. Biol Plant 52(3):437–444. doi:10.1007/s10535-008-0088-2

    Article  CAS  Google Scholar 

  • Volpert R, Osswald W, Elstner EF (1995) Effects of cinnamic acid-derivatives on indole acetic acid oxidation by peroxidase. Phytochemistry 38(1):19–22. doi:10.1016/0031-9422(94)00553-6

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95(5):707–735. doi:10.1093/aob/mci083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu HC, Lin CC (2012) Red Light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 47(10):1490–1494

    CAS  Google Scholar 

  • Wynne J, McDonald MS (2002) Adventitious root formation in woody plant tissue: the influence of light and indole-3-butyric acid (IBA) on adventitious root induction in Betula pendula. In Vitro Cell Dev Biol-Plant 38(2):210–212. doi:10.1079/ivp2001266

    Article  CAS  Google Scholar 

  • Xu YW, Zeng JW, Zou YT, Husaini AM, Yao RY, Wu DG, Wu W (2011) Combined effect of dark and wounding on regeneration potential of Houttuynia cordata Thunb. leaves. Indian J Exp Biol 49(7):540–546

    CAS  PubMed  Google Scholar 

  • Zolman BR, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180(1):237–251. doi:10.1534/genetics.108.090399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Agency for Innovation by Science and Technology in Flanders (IWT 83231) and a fellowship from Ghent University (BOF 01J11408). Plants were supplied by Oprins Plant NV. (Rijkevorsel, Belgium). We thank Valerie Verschoote for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Geelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verstraeten, I., Geelen, D. Adventitious Rooting and Browning are Differentially Controlled by Auxin in Rooting-Recalcitrant Elegia capensis (Burm. f.) Schelpe. J Plant Growth Regul 34, 475–484 (2015). https://doi.org/10.1007/s00344-015-9482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9482-0

Keywords

Navigation