Skip to main content
Log in

Overexpression of SiDGAT1, a gene encoding acyl-CoA:diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Diacylglycerol acyltransferase (DGAT1; EC 2.3.1.20) is the key enzyme governing the terminal step of triacylglycerol synthesis in plant seeds. The aims here were to isolate and characterize a full-length cDNA encoding DGAT1 from the sesame (Sesamum indicum L.) cultivar ‘Wanzhi1’ (oil content 55 ± 2 %; SiDGAT1); and to over-express that gene in Arabidopsis (Arabidopsis thaliana L.) and soybean (Glycine max L. Merr.). The 1,629-bp open reading frame of the SiDGAT1 cDNA encoded a protein of 543 amino acids, which showed high similarity to other plant DGAT1s. The transcript of the SiDGAT1 gene was differentially abundant among organs in sesame. The highest transcript abundance was found in the developing seeds. The expression of the SiDGAT1 cDNA driven by the cauliflower mosaic virus 35S-promoter was able to restore to near normal oil content and the fatty acid composition phenotypes of the Arabidopsis mutant AS11 (an AtDGAT1). Over-expression of SiDGAT1 in several lines of Arabidopsis thaliana ‘Col 0’ resulted in increases in oil content; and in seed weight. The ratio of eicosenoic acid (C20:1) was increased, whereas that of oleic acid (C18:1) was decreased in transgenic Arabidopsis plants. The SiDGAT1 was also used to transform soybean. Compared to controls, the mean increase in oil content was 1.75 and 1.39 % respectively in T2 and T3 transgenic soybean lines. Further, SiDGAT1 transcript abundance was correlated with increased seed size and 100-seed weight, but did not alter the fatty acid composition of the seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arslan Ç, Uzun B, Ülger S, Đlhan Çağırgan M (2007) Determination of oil content and fatty acid composition of sesame mutants suited for intensive management conditions. J Am Oil Chem Soc 84:917–920

    Article  CAS  Google Scholar 

  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA miniprepration: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • FAO (2005) Agricultural data, FAOSTAT. http://faostat.fao.org/faostat/collections?subset=agriculture

  • Fernandez AM, Ferron MV, Cardenas JAG, Belarbi EH, Alonso DL, Maroto FG (2009) Cloning and molecular characterization of the acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from Echium. Lipids 44:555–568

    Article  Google Scholar 

  • Griffith G, Harwood JL (1991) The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao L.). Planta 184:279–284

    Article  Google Scholar 

  • He X, Turner C, Chen GQ, Lin JT, McKeon TA (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39:311–318

    Article  PubMed  CAS  Google Scholar 

  • Hobbs HD, Chaofu L, Hills M (1999) Cloning of a cDNA encoding acyltransferase from Arabidopsis thaliana. FEBS Lett 452:145–149

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) Tmbase-a database of membrane spanning proteins segments. Bio Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joyce CW, Shelness GS, Davis MA, Lee RG, Skinner K, Anderson RA, Rudel LL (2000) ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell 11:3675–3687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J-T, MacKenzie SL, Covello PS, Kunst L (1995) Alteration of fatty acid composition by an EMS-induced mutation in Arabidopsis thaliana affecting acylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kroon JTM, Wei W, Simona WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA: diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Lacey DJ, Hill MJ (1996) Heterogeneity of the endoplasmic reticulum with respect to lipid synthesis in developing seeds of Brassica napus L. Planta 199:545–551

  • Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol 148:89–96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li R, Yu K, Hildebrand D (2010) DGAT1, DGAT2 and PDAT expression in seeds and other organs of epoxy and hydroxy fatty acid accumulating plants. Lipids 45:145–157

    Article  PubMed  Google Scholar 

  • Li R, Yu K, Tateno M, Wu Y, Hatanaka T, Hildebrand D (2012) Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 14:29–38

    Article  PubMed  Google Scholar 

  • Liu M, Li DM, Wang ZK, Meng FL, Li YG, Wu XX, Teng WL, Han YP, Li WB (2012) Transgenic expression of THIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tiss Organ Cult 111:277–289

    Article  CAS  Google Scholar 

  • Locks YY, Snyder CL, Zhu WM, Siloto RMP, Weselake RJ, Shah S (2009) Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus. Physiol Plant 137:61–71

    Article  Google Scholar 

  • Lu C, Hills MJ (2002) Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress druing germination and seedling development. Plant Physiol 129(1352):1358

    Google Scholar 

  • Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    Article  PubMed  CAS  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturation are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  PubMed  CAS  Google Scholar 

  • Nykiforuk CL, Furukawa-Stoffer TL, Huff PW, Sarna M, Laroche A, Moloney MM, Weselake RJ (2002) Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose mediated induction of enzyme biosynthesis. Biochim Biophys Acta 1580:95–109

    Article  PubMed  CAS  Google Scholar 

  • Oakes J, Brackenridge D, Colletti R, Daley M, Hawkins DJ, Xiong H, Mai J, Screen SE, Val D, Lardizabal K, Gruys K, Deikman J (2011) Expression of fungal diacylglycerol acyltransferase 2 genes to increase kernel oil in maize. Plant Physiol 155:1146–1157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raheja RK, Batta SK, Ahuja KL, Labana KS, Singh M (1987) Comparison of oil content and fatty acid composition of peanut genotypes differing in growth habit. Plant Food Hum Nutr (Formerly Qualitas Plantarum) 37:103–108

    Article  CAS  Google Scholar 

  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acytransferase. Plant Physiol 141:1533–1543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scarth R, Tang J (2006) Modification of brassica oil using conventional and transgenic approaches. Crop Sci 46:1225–1236

    Article  CAS  Google Scholar 

  • Settlage SB, Wilson RF, Kwanyuen P (1995) Localization of diacylglycerol acyltransferase to oil body associated endoplasmic reticulum. Plant Physiol Biochem 33:199–407

    Google Scholar 

  • Settlage SB, Kwanyuen P, Wilson RF (1998) Relation between diacylglycerol acyltransferase activity and oil concentration in soybean. JAOCS 75:775–781

    CAS  Google Scholar 

  • Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387

    Article  PubMed  CAS  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shorrosh BS (2000) Plant acyltransferases. International Patent Application No. WO00/66749

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    Article  CAS  Google Scholar 

  • Sukhija PS, Palmquist DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36:1202–1206

    Article  CAS  Google Scholar 

  • Sun L, Ouyang C, Kou SL, Wang SH, Yao YY, Peng T, Xu Y, Tang L, Chen F (2011) Cloning and characterization of a cDNA encoding type 1 Diacylglycerol Acyltransferase from sunflower (Helianthus annuus L.). Z Naturforsch C 66:63–72

    Article  PubMed  CAS  Google Scholar 

  • Tan HL, Yang XH, Zhang FX, Zheng X, Qu CM, Mu JY, Fu FY, Li JN, Guan RZ, Zhang HS, Wang GD, Zuo JR (2011) Enhanced seed oil production in Canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang HW, Zhang JS, Gai JY, Chen SY (2006) Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theor Appl Genet 112:1086–1097

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Zhang JS, Liao Y, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729

    Article  PubMed  CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Pomeroy MK, Lawson SL (1991) Properties of diacylglycerol acyltransferase from microspore-derived embryos of Brassica napus L. Phytochemistry 30:3533–3538

  • Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Rakow G, Raney P, Moloney MM, Harwood JL (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59:3543–3549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Francis T, Mietkiewska E, Giblin M, Barton DL, Zhang M, Zhang Y, Taylor DC (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1(DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotech J 6:799–818

    Article  CAS  Google Scholar 

  • Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature Genet 40:367–372

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted in the Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research & Development Center, CARS and the key Laboratory of Northeastern Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, financially supported by National High Technology Project (Contract No. 2006AA10Z1F1), National Core Soybean Genetic Engineering Project (Contract No. 2013ZX08004-003, 2011ZX08004-003, 2008ZX08004-002, 2009ZX08004-002B, 2009ZX08009-089B), Chinese National Natural Science Foundation (60932008, 30971810), Science Foundation of Northeast Agricultural university, and Provincial/National education Ministry for the teams of soybean molecular design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li.

Additional information

Zhikun Wang, Wenjia Huang, Jianmin Chang and Arun Sebastian have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, W., Chang, J. et al. Overexpression of SiDGAT1, a gene encoding acyl-CoA:diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean. Plant Cell Tiss Organ Cult 119, 399–410 (2014). https://doi.org/10.1007/s11240-014-0543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0543-z

Keywords

Navigation