Skip to main content
Log in

Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The colour of the red wine is essentially due to the release of anthocyanins from the red skin of grape berries during the process of wine making. Anthocyanins are synthesized during ripening of the berries under the control of VvMYBA1 transcription factor that controls the expression of UFGT. In order to identify the whole set of downstream regulated genes, we targeted constitutive ectopic expression of VlmybA1-2 into grapevine hairy roots and plants. The ectopic expression of VlmybA1-2 triggered de novo production and storage of anthocyanins in all transgenic vegetative organs, leading to a very intense red coloration, and did not interfere with proanthocyanidin (PA) biosynthesis. The ectopic red pigmentation was due to the accumulation of anthocyanins in vacuoles and anthocyanin vacuolar inclusion (AVIs) in all organs but only in specific tissues. A transcriptomic analysis using a 14 K oligoarray revealed that the ectopic expression of VlmybA1-2 activated only few genes, most of which are involved in both PA and anthocyanin biosynthesis, while the expression of BAN and LAR (two specific genes of the PA biosynthesis pathway) was unaffected. Among these, 4 genes emerged given the amplitude of their up-regulation, quantitatively similar to VlmybA1-2 itself. In addition to the previously described UFGT, this set comprised an isogen of GST, an O-methyltransferase, both of which are supposed to play a role in the anthocyanin biosynthesis pathway, as well as a candidate gene putatively involved in the vacuolar anthocyanin transport in grapevine (anthoMATE). Together, these results suggest that MybA1 activates the last steps of anthocyanin synthesis and transport through the regulation of a narrow, specific spectrum of genes regulated as a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHS:

Chalcone synthase

F 3′-H:

Flavonoid 3′-hydroxylase

F 3′5′-H:

Flavonoid 3′, 5′-hydroxylase

LDOX:

Leucoanthocyanidin dioxygenase

UFGT:

UDP-glucose:flavonoid 3-O-glucosyltransferase

OMT:

O-Methyltransferase

PA:

Proanthocyanidins

GST:

Glutathione S-transferase

MATE:

Multidrug and toxic compound extrusion

LAR:

Leucoanthocyanidin reductase

ANR:

Anthocyanidin reductase

References

  • Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383. doi:10.1016/j.plantsci.2005.09.007

    Article  CAS  Google Scholar 

  • Aharoni A, De Vos CF, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332. doi:10.1046/j.1365-313X.2001.01154.x

    Article  PubMed  CAS  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor Appl Genet 117:1009–1019. doi:10.1007/s00122-008-0840-1

    Article  PubMed  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779. doi:10.1111/j.1365-313X.2006.02733.x

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Downey M, Harvey J, Ashton A, Tanner G, Robinson S (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663. doi:10.1104/pp.105.064238

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291. doi:10.1104/pp.105.073262

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Jaffé F, Takos A, Walker A, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361. doi:10.1104/pp.106.093203

    Article  PubMed  CAS  Google Scholar 

  • Borevitz J, Xia Y, Blount J, Dixon R, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2006) Grapevine (Vitis vinifera L.). In: Wang K (ed) Agrobacterium protocols. Methods Mol Biol 344:273–286. Humana Press Inc., Totowa

  • Braidot E, Petrussa E, Bertolini A, Peresson C, Ermacora P, Loi N, Terdoslavich M, Passamonti S, Macri F, Vianello A (2008) Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228:203–213. doi:10.1007/s00425-008-0730-4

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines Vitis vinifera L genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′, 5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12. doi:10.1186/1471-2164-7-12

    Article  PubMed  Google Scholar 

  • Castellarin S, Matthews M, Di Gaspero G, Gambetta G (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112. doi:10.1007/s00425-007-0598-8

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Zhang W, Franco C (2003) Anthocyanin vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnol Lett 25:835–839. doi:10.1023/A:1024028603089

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Curtin C, Bézier A, Franco C, Zhang W (2008) Purification, molecular cloning and characterization of glutathione S-transferase (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 29:3621–3634. doi:10.1093/jxb/ern217

    Article  Google Scholar 

  • Davies K, Schwinn K (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  Google Scholar 

  • Debeaujon I, Peeters AJ, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511. doi:10.1104/pp.105.067231

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053. doi:10.1104/pp.108.118919

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434

    Article  PubMed  CAS  Google Scholar 

  • Deytieux C, Geny L, Lapaillerie D, Claverol S, Bonneu M, Doneche B (2007) Proteome analysis of grape skins during ripening. J Exp Bot 58:1851–1862

    Article  PubMed  CAS  Google Scholar 

  • Espley R, Hellens R, Putterill J, Stevenson D, Kutty-Amma S, Allan A (2007) Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Torregrossa L, Terrier N, Sreekantan L, Grimplet J, Davies C, Thomas MR, Romieu C, Ageorges A (2007) Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Mol Biol 63:307–323

    Article  PubMed  CAS  Google Scholar 

  • Ford C, Boss P, Bordier Høj P (1998) Cloning and characterization of Vitis vinifera UDP-Glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    Article  PubMed  CAS  Google Scholar 

  • Geekiyanage S, Takase T, Ogura Y, Kiyosue T (2007) Anthocyanin production by over-expression of grape transcription factor gene VlmybA1 in transgenic tobacco and Arabidopsis. Plant Biotechnol Rep 1:11–18

    Article  Google Scholar 

  • Harborne JB, Grayer RJ (1993) Flavonoids and insects. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman and Hall, London, pp 589–618

    Google Scholar 

  • Hardie WJ, O’Brien TP, Jaudzems VG (1996) Morphology, anatomy and development of the pericarp after anthesis in grape (Vitis vinifera L.). Aust J Grape Wine Res 2:97–142

    Article  Google Scholar 

  • Holton T, Cornish E (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006) Expression of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci 170:61–69

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2008) Expression of multi-copy flavonoid pathway genes coincides with anthocyanin, flavonol and flavan-3-ol accumulation of grapevine. Vitis 47:135–140

    CAS  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JA, Hayasaka Y, Vidal S, Waters EJ, Jones GP (2001) Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem 49:5348–5355

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Koshita Y, Kobayashi S, Ishimaru M, Funamoto Y, Shiraishi M, Azuma A, Yakushiji H, Nakayama M (2008) Anthocyanin regulator from grapes, VlmybA1-2, produces reddish-purple plants. J Jpn Soc Hort Sci 77:33–37

    Article  CAS  Google Scholar 

  • Laitinen R, Ainasoja M, Broholm S, Teeri T, Elomaa P (2008) Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J Exp Bot 59:3691–3703

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268

    Article  PubMed  CAS  Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  PubMed  CAS  Google Scholar 

  • Marrs K, Alfenito M, Lloyd A, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Clendennen S, Caldwell C, Liu XL, Connors K, Matheis N, Schuster D, Menasco D, Wagoner W, Lightner J, Ry Wagner D (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Matus JM, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  Google Scholar 

  • Mizuno H, Hirano K, Okamoto G (2006) Effect of anthocyanin composition in grape skin on anthocyanic vacuolar inclusion development and skin coloration. Vitis 45:173–177

    CAS  Google Scholar 

  • Mol JJ, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Mueller L, Goodman C, Silady R, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    Article  PubMed  CAS  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1327–1335

    Article  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen H, Mol J, Koes R (1993) Regulatory genes-controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Walker AR, Mooney M, Gray JC (2003) Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Mol Biol 52:679–688

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yamazaki M (2002) Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin: lessons from Perilla frutescens as a model plant. New Phytol 155:9–23

    Article  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol J, Koes R (2002) ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14:2121–2135

    Article  PubMed  CAS  Google Scholar 

  • Takos A, Jaffe F, Jacob S, Bogs J, Robinson S, Walker A (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin J-P, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:820–831

    Article  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J-I, Awazuhara M, Inoue E, Takahashi H, Goodenowe D, Kitayam M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa L, Bouquet A (1997) Agrobacterium tumefaciens and Agrobacterium rhizogenes co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tissue Organ Cult 49:53–62

    Article  CAS  Google Scholar 

  • Torregrosa L, Verries C, Tesniere C (2002) Grapevine (Vitis vinifera L.) promoter analysis by biolistic mediated transient transformation of cell suspensions. Vitis 41:27–32

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 19:e1326

    Article  Google Scholar 

  • Verries C, Guiraud JL, Souquet JM, Vialet S, Terrier N, Ollé D (2008) Validation of an extraction method on whole pericarp of grape berry (Vitis vinifera L. cv. Shiraz) to study biochemical and molecular aspects of flavan-3-ol synthesis during berry development. J Agric Food Chem 56:5896–5904

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1999

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann I, Heim M, Weisshaar B, Uhrig J (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like bHLH proteins. Plant J 40:22–34

    Article  PubMed  CAS  Google Scholar 

  • Zuluaga DL, Gonzali S, Loreti E, Pucciariello C, Degl’Innocenti E, Guidi L, Alpi A, Perata P (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35:606–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the EU program FLAVO 2005-513960. The authors thank Dr. M. Curtis (University of Zurich) for providing Gateway compatible cloning vectors, Dr. S. Kobayashi, who kindly provided VlMybA1-2, and Clotilde Verriès for her analytical help. M. C. Cutanda received a postdoctoral grant provided by the Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La Mancha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Ageorges.

Additional information

M. C. Cutanda-Perez and A. Ageorges contributed equally to this work and should therefore be considered as first co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2008_9446_MOESM1_ESM.xls

Experimental design (“design”, sheet 1); complete hybridization results log2 transformed and normalized (“Int-lognorm”, sheet 2), list of genes significantly (P value <0.05) affected by ectopic overexpression of VlmybA1-2 (“MybA1significant”, sheet 3) (XLS 5499 kb)

11103_2008_9446_MOESM2_ESM.xls

List of genes significantly overexpressed (more than 1.5) in hairy roots expressing VlmybA1-2 (sheet 1) and list of genes significantly repressed (more than 1.5) in hairy roots expressing VlmybA1-2 (sheet 2). (XLS 166 kb)

11103_2008_9446_MOESM3_ESM.pdf

Expression analysis of transcripts ANR, LAR1 and LAR2. Expression values have been normalized with VvEF1alpha and expressed as relative abundance. All values are the mean of three replicates on two independent lines. (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutanda-Perez, MC., Ageorges, A., Gomez, C. et al. Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69, 633–648 (2009). https://doi.org/10.1007/s11103-008-9446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9446-x

Keywords

Navigation