Skip to main content

Advertisement

Log in

Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The exogenous application of salicylic acid (SA) not only protects plants against stress, but also enhances their growth and productivity. In this study, proliferating shoots of Cistus heterophyllus subsp. carthaginensis, an endangered plant species, were incubated in the presence of 0, 10, 100, and 1,000 μM SA for a period of 2 months. Overall growth, phenylpropanoid metabolism and antioxidant capacity were then determined. At low SA concentration, the efficiency of photosystem II (PSII) and shoot growth remained stable, while chlorophyll and carotenoid levels increased. Furthermore, there were no major changes in the levels of H2O2 in the different treatments (less than 10 % compared with the control), but an increase in lipid peroxidation, proline content and free and bound SA concentrations was observed in 100 μM SA-treated shoots. SA treatments resulted in increased activities of phenylalanine ammonia lyase (EC 4.3.1.24) and soluble peroxidases (EC 1.11.1.7), which strongly correlated with the decrease in soluble flavanols and the increase of proanthocyanidins, whereas cell wall-bound peroxidases exhibited a SA-concentration-dependent down-regulation. The results provided evidence that the differences in SA-induced changes in phenolic metabolism, especially the oxidation of flavanols by soluble peroxidases, could serve as a backup defence system contributing to a reduction in oxidative cellular damage, as suggested by the high anti-lipid oxidation activity displayed by Cistus extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

FRAP:

Ferric Reducing Antioxidant Power

MS/2:

Murashige and Skoog’s medium with macronutrients at half-strength

PAL:

Phenylalanine ammonia-lyase

PAs:

Proanthocyanidins

Prx:

Class III plant peroxidase

PSII:

Photosystem II

ROS:

Reactive oxygen species

SA:

Salicylic acid

TBARS:

Thiobarbituric acid-reacting substances

TPC:

Total phenol content

References

  • Abreu ME, Munné-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  • Alia, Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B Biol 38:253–257

    Article  CAS  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchí-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  PubMed  CAS  Google Scholar 

  • Amoo SO, Aremu AO, Staden JV (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult 111:345–358

    Article  CAS  Google Scholar 

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2010) Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol 48:2273–2282

    Article  PubMed  Google Scholar 

  • Bate NJ, Orr J, Ni W, Meroni A, Nadler-Hassan T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA 91:7608–7612

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare IB (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chandra C, Bhatt RK (1998) Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35:255–258

    Article  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72

    Article  CAS  Google Scholar 

  • Cos P, De Bruyne T, Hermans N, Apers S, Berghe DV, Vlietinck AJ (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11:1345–1359

    Article  PubMed  CAS  Google Scholar 

  • Dinis TC, Maderia VM, Almeida LM (1994) Action of phenolic derivates (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Pavia NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci 168:511–517

    Article  CAS  Google Scholar 

  • El-Tayeb MA, El-Enany AE, Ahmed NL (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul 50:191–199

    Article  CAS  Google Scholar 

  • Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB (2010) Thorough study of reactivity of various compound classes toward the Folin–Ciocalteu reagent. J Agric Food Chem 58:8139–8144

    Article  PubMed  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Ferrer MA, Calderón AA, Muñoz R, Barceló A (1990) 4-Methoxy-alpha-naphthol as a specific subtrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem Anal 1:63–69

    Article  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Pereira D, Valentao P, Andrade P, Duarte P, Ros Barceló A, Sottomayor M (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854

    Article  PubMed  CAS  Google Scholar 

  • Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal 24:1043–1048

    Article  CAS  Google Scholar 

  • Foyer C, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid Redox Signal 11:1–45

    Article  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagege D, Didier Courtois D, Joseph C (2012) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-012-0248-0

    Google Scholar 

  • Gratão PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA (2008) Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tissue Organ Cult 94:73–83

    Article  Google Scholar 

  • Grippa E, Pavone F, Gatto MT, Petrucci R, Marrosu G, Silvestrini B, Saso L (2000) In vitro evaluation of antioxidant activity by electrophoresis and high performance liquid chromatography. Biochem Biophys Acta 1524:171–177

    Article  PubMed  CAS  Google Scholar 

  • Hatzilazarou SP, Syros TD, Yupsanis TA, Bosabalidis AM, Economou AS (2006) Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J Plant Physiol 163:827–836

    Article  PubMed  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmed A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hernández I, Alegre L, van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3:321–328

    CAS  Google Scholar 

  • Jirage D, Zhou N, Cooper B, Clarke JD, Dong X, Glazebrook J (2001) Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J 26:395–407

    Article  PubMed  CAS  Google Scholar 

  • Katalinić V, Milos M, Modun D, Musić I, Boban M (2004) Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem 86:593–600

    Article  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Kováčik J, Grúz J, Bačkor M, Strnad M, Repčák M (2009a) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    Article  PubMed  Google Scholar 

  • Kováčik J, Grúz J, Hedbavny J, Klejdus B, Strnad M (2009b) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855

    Article  PubMed  Google Scholar 

  • Kováčik J, Klejdus B, Hedbavny J, Zoń J (2011) Significance of phenols in cadmium and nickel uptake. J Plant Physiol 168:576–584

    Article  PubMed  Google Scholar 

  • Lee N, Wetzstein HY, Sommer HE (1985) Effects of quantum flux density on photosynthesis and chloroplast ultrastructure in tissue-cultured plantlets and seedlings of Liquidambar styraciflua L. towards improved acclimatization and field survival. Plant Physiol 78:637–641

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43:379–393

    Article  CAS  Google Scholar 

  • López-Arnaldos T, Muñoz R, Ferrer MA, Calderón AA (2001) Changes in phenol content during strawberry (Fragaria x ananasa, cv. Chandler) callus culture. Physiol Plant 113:315–322

    Article  PubMed  Google Scholar 

  • Maldonado PD, Rivero-Cruz I, Mata R, Pedraza-Chaverri J (2005) Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem 53:1996–2001

    Article  PubMed  CAS  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpiński S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807

    Article  PubMed  CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    Article  PubMed  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Saxena P (2009) Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189

    Article  CAS  Google Scholar 

  • Moharekar ST, Lokhand SD, Hara T, Tanaka R, Tanaka A, Chavan PD (2003) Effect of salicylic acid on chlorophyll and caroteniods contents of wheat and moong seedlings. Photosynthetica 41:315–317

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakao M, Takio S, Ono K (1998) Alkyl peroxyl radical-scavenging activity of catechins. Phytochemistry 49:2379–2382

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of the four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental triggered flavonoid synthesis. J Plant Physiol 165:1491–1499

    Article  PubMed  CAS  Google Scholar 

  • Pannala AS, Chan TS, O’Brien PJ, Rice-Evans C (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282:1161–1168

    Article  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Pérez FJ, Villegas D, Mejia N (2002) Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry 60:573–580

    Article  PubMed  Google Scholar 

  • Pérez-Tortosa V, López-Orenes A, Pérez-Martínez A, Ferrer MA, Calderón AA (2012) Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem 130:362–369

    Article  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath VG, Ormorod P, Mur P, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Gómez P, Guerra J, Carrión MA (2002) Libro rojo de la flora silvestre protegida de la Región de Murcia I & II. Consejería de Agricultura Agua y Medio Ambiente, Dirección General del Medio Natural, Murcia

    Google Scholar 

  • Serret MD, Trillas MI, Matas J, Araus JL (2001) The effect of photoautotrophy on photosynthesis and photoinhibition of gardenia plantlets during micropropagation. Photosynthetica 39:245–255

    Article  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma V, Gulati A, Ravindranath SD, Kumar V (2005) A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J Food Compos Anal 18:583–594

    Article  CAS  Google Scholar 

  • Shetty K (2004) Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Process Biochem 39:789–803

    Article  CAS  Google Scholar 

  • Soobrattee MA, Neergheen VS, Luximon-Ramm A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200–213

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T (2011) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168:213–219

    Article  PubMed  CAS  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidant in normal physiological function and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Verberne MC, Brouwer N, Delbianco F, Linthorst HJM, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45–50

    Article  PubMed  CAS  Google Scholar 

  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht, The Netherlands, pp 151–196

    Book  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Xu JZ, Yeung SY, Chang Q, Huang Y, Chen ZY (2004) Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br J Nutr 91:873–881

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  • Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Yuan S-x, Su Y-b, Liu Y-m, Fang Z-y, Yang L-m, Zhuang M, Zhang Y-y, Sun P-t (2012) Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Plant Cell Tissue Organ Cult 110:69–76

    Article  CAS  Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministerio de Ciencia e Innovación (project number CGL2006-11569), the Fundación Séneca (project number 08799/PI/08), and the Consejería de Educación, Ciencia e Investigación (CARM, CLUSTER 465.03.08). A. López-Orenes hold a grant from the Universidad Politécnica de Cartagena. Part of this work was carried out at the Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Ferrer.

Additional information

This article is dedicated to Professor Alfonso Ros Barceló “in memoriam”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Orenes, A., Martínez-Moreno, J.M., Calderón, A.A. et al. Changes in phenolic metabolism in salicylic acid-treated shoots of Cistus heterophyllus . Plant Cell Tiss Organ Cult 113, 417–427 (2013). https://doi.org/10.1007/s11240-012-0281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0281-z

Keywords

Navigation