Skip to main content
Log in

Acquired thermotolerance in plants

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Acquired thermotolerance in plants refers to the ability to cope with lethal high temperatures following acclimatization at sublethal high temperatures. Acquired thermotolerance reflects an actual thermotolerance mechanism naturally occurring in plants and has been extensively used in thermotolerant line identification. In recent years, great progress has been achieved in the elucidation of biochemical, physiological, and molecular mechanisms of thermotolerance acquisition by using genomic approaches, including microarray analysis and mutation, knockout, and overexpression of related genes. Heat shock proteins (HSPs), such as Hsp101, BOBBER1, and Hsa32, have been shown to be important for inducement and maintenance of acquired thermotolerance. Downstream target genes and upstream regulation factors of HsfA2, including Hsa32, Apx2, small ubiquitin-like modifier proteins, FK506-binding proteins ROF1 (FKBP62) and ROF2 (FKBP65), and heat shock transcription factor binding protein, have been revealed to be involved in thermotolerance acquisition regulation. Moreover, the role of abscisic acid, ethylene, hydrogen peroxide, and salicylic acid in acquired thermotolerance has been demonstrated by molecular evidence from Arabidopsis mutants and transgenic lines. Most importantly, different molecular mechanisms of thermotolerance acquisition have been shown to underlie various acclimatization methods. Establishment of an experimental system similar to natural conditions is important for further exploration of natural thermotolerance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HS:

Heat shock

HSP:

Heat shock protein

HSF:

Heat shock transcription factor

SUMO:

Small ubiquitin-like modifier protein

ROF1 (FKBP62):

FK506-binding proteins

ROF2 (FKBP65):

FK506-binding proteins

HSBP:

HSF binding protein

IP3:

Inositol 1,4,5-trisphosphate

References

  • Abernethy RH, Thiel DS, Petersen NS, Helm K (1989) Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol 89(2):569–576

    Article  PubMed  CAS  Google Scholar 

  • Ahrman E, Lambert W, Aquilina JA, Robinson CV, Emanuelsson CS (2007) Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci 16:1464–1478

    Article  PubMed  Google Scholar 

  • Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O, Maayan E, Bocovza S, Efrat Y, von Koskull-Doring P, Ohad N, Breiman A (2007) Arabidopsis immunophilins ROF1 (At-FKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90. Plant Mol Biol 63:237–255

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Friedrich KL, Vierling E (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem 281(52):39943–39952

    Article  PubMed  CAS  Google Scholar 

  • Beere H (2004) ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Burke JJ (1998) Characterization of acquired thermotolerance in soybean seedlings. Plant Physiol Biochem 36(8):601–607

    Article  CAS  Google Scholar 

  • Burke JJ, O’Mahony PJ (2001) Protective role in acquired thermotolerance of developmentally regulated heat shock proteins in cotton seeds. J Cotton Sci 5:174–183

    CAS  Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  PubMed  CAS  Google Scholar 

  • Cao BH, Lu YQ, Chen GJ, Lei JJ (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tiss Organ Cult 103:217–226

    Article  CAS  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol 74:33–45

    Article  PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Guterman I, Menda N, Ovadis M, Shalit M, Pichersky E, Zamir D, Lewinsohn E, Adam Z, Weiss D, Vainstein A (2005) Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222:37–46

    Article  PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 67:363–373

    Article  PubMed  CAS  Google Scholar 

  • Dash S, Mohanty N (2001) Evaluation of assay for the analysis of thermo-tolerance and recovery potentials of seedlings of wheat (Triticum aestivum L.) cultivars. J Plant Physiol 158:1153–1165

    Article  CAS  Google Scholar 

  • de Klerk GJ, Pumisutapon P (2008) Protection of in-vitro grown Arabidopsis seedlings against abiotic stresses. Plant Cell Tiss Organ Cult 95:149–154

    Article  Google Scholar 

  • Ducruet JM, Peeva V, Havaux M (2007) Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth Res 93:159–171

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Mack AA, Morris VR, Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant specific zinc finger proteins. Proc Natl Acad Sci 100:6831–6836

    Article  PubMed  CAS  Google Scholar 

  • Fan ZH, Zhou RG, Li XZ, Bai J (2000) Calcium-calmodulin and the inducement of heat shock proteins in wheat seedling. Acta Phytophysiol Sin 26(4):331–336

    CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem 3(12):1315–1347

    Article  PubMed  CAS  Google Scholar 

  • Harrington HM, Alm DM (1988) Interaction of heat and salt shock in cultured tobacco cells. Plant Physiol 88:618–625

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132:757–767

    Article  PubMed  CAS  Google Scholar 

  • Howarth CJ, Pollock CJ, Peacock JM (1997) Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytol 137:129–139

    Article  Google Scholar 

  • Hsu SF, Lai HC, Jinn TL (2010) Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol 153:773–784

    Article  PubMed  CAS  Google Scholar 

  • Jiang YW, Huang BR (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41(2):436–442

    Article  CAS  Google Scholar 

  • Jin JB, Jin YH, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I, Yun DJ, Bressan RA, Hasegawa PM (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530–540

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7:1333–1342

    PubMed  CAS  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  PubMed  Google Scholar 

  • Kumar G, Krishnaprasad BT, Savitha M, Gopalakrishna R, Mukhopadhyay K, Ramamohan G, Udayakumar M (1999) Enhanced expression of heat-shock proteins in thermotolerant lines of sunflower and their progenies selected on the basis of temperature-induction response (TIR). Theor Appl Genet 99:359–367

    Article  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Huang B (2005) Effect of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47(1):17–28

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Chang CS, Lu LS, Liu CA, Chan MT, Charng YY (2003) Overexpression of Arabidopsis thaliana heat shock factor gene (AtHsf1b) enhances chilling tolerance in transgenic tomato. Bot Bull Acad Sin 44:129–140

    CAS  Google Scholar 

  • Li CG, Chen QJ, Gao XQ, Qi BS, Chen NZ, Xu SM, Chen J, Wang XC (2005) AtHsfA2 modulates expression of stress responsive genes and enhanced tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48(6):540–550

    Article  PubMed  CAS  Google Scholar 

  • Lim CJ, Yang K, Hong JK, Choi JS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119:373–383

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Roberts JK, Key JL (1984) Acquisition of thermotolerance in soybean seedlings. Plant Physiol 74:152–160

    Article  PubMed  CAS  Google Scholar 

  • Liu XZ, Huang BR (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Liu HT, Zhao H, Li B, Sun DY, Zhou RG (2001) Involvement of calcium-calmodulin in the expression of HSP26 gene in wheat. Acta Bot Sin 43(7):766–768

    CAS  Google Scholar 

  • Liu HT, Huang WD, Pan QH, Weng FH, Zhan JC, Liu Y, Wan SB, Liu YY (2006a) Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. J Plant Physiol 163:405–416

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD (2006b) Novel interrelationship between salicylic acid, abscisic acid and PIP2-specific-phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Liu HT, Pan QH, Yang HR, Zhan JH, Huang WD (2009a) The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. Planta 229:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Yang HR, Huang WD, Hou ZX, Tang K (2009b) Salicylic acid 2-O-β-d-glucose: a possible signal substance involved thermotolerance induced by heat acclimation. Chin Bull Bot 44(2):211–215

    CAS  Google Scholar 

  • Ludwig-Müller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol 123:949–958

    Article  PubMed  Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne EMK, Kerschen A, Vierling E, Whitesell L, Queitsch C, Gunatilaka AAL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    Article  PubMed  CAS  Google Scholar 

  • Medina-Escobar N, Cardenas J, Munoz-Blanco J, Caballero JL (1998) Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding to a mRNA for a low-molecular-weight heat-shock protein. Plant Mol Biol 36:33–42

    Article  PubMed  CAS  Google Scholar 

  • Meiri D, Breiman A (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J 59:387–399

    Article  PubMed  CAS  Google Scholar 

  • Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A (2010) Involvement of Arabidopsis ROF2 (FKBP65) in thermo tolerance. Plant Mol Biol 72:191–203

    Article  PubMed  CAS  Google Scholar 

  • Meyer H, Santarius KA (1998) Short-term thermal acclimation and heat tolerance of gametophytes of mosses. Oecologia 115:1–8

    Article  Google Scholar 

  • Miura K, Hasegawa PM (2010) Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20:223–232

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci 106:5418–5423

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J, Kannan KB, Martinez LM, Segal C (1999) Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/ Hsp100 protein homologue. Gene 230:187–195

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  PubMed  CAS  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal A, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Perez DE, SteenHoyer J, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 Is a noncanonical Arabidopsis small heat shock protein required for both development and thermo tolerance. Plant Physiol 151:241–252

    Article  PubMed  CAS  Google Scholar 

  • Pumisutapon P, Visser RGF, de Klerk GJ (2012) Moderate abiotic stresses increase rhizome growth and outgrowth of axillary buds in Alstroemeria cultured in vitro. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0160-7

    Google Scholar 

  • Queitsch C, Hong S-W, Vierling E, Lindquist SL (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    PubMed  CAS  Google Scholar 

  • Rai MK, Shekhawat NS, Harish Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross tolerance in plants. Physiol Plant 103:437–441

    Article  CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Doring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M, Srikanthbabu V, Mohanraju B, Kumar G, Shivaprakash N, Udayakumar M (2003) Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. J Exp Bot 54:2569–2578

    Article  PubMed  CAS  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  PubMed  CAS  Google Scholar 

  • Song LL, Ding W, Zhao MG, Sun BT, Zhang LX (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    Article  CAS  Google Scholar 

  • Song LL, Ding W, Shen J, Zhang ZG, Bi YR, Zhang LX (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175(6):826–832

    Article  CAS  Google Scholar 

  • Song LL, Jiang YL, Zhao HQ, Zhang ZG (2012) Comparative study on calli from two reed ecotypes under heat stress. Russ J Plant Physiol 59(3):381–388

    Article  CAS  Google Scholar 

  • Srikanthbabu V, Kumar G, Krishnaprasad BT, Gopalakrishna R, Savitha M, Udayakumar M (2002) Identification of pea genotypes with enhanced thermotolerance using temperature induction response (TIR) technique. J Plant Physiol 159:535–545

    Article  CAS  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Tarora K, Tamaki M, Shudo A, Urasaki N, Matsumura H, Adaniya S (2010) Cloning of a heat stress transcription factor, CphsfB1, that is constitutively expressed in radicles and is heat-inducible in the leaves of Carica papaya. Plant Cell Tiss Organ Cult 102:69–77

    Article  CAS  Google Scholar 

  • Tsai CM, Hsu BD (2009) Thermotolerance of the photosynthetic light reactions in two Phaseolus species: a comparative study. Photosynthetica 47:255–262

    Article  CAS  Google Scholar 

  • Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP (1998) Heat induced resistance in barley to powdery mildew (Blumeria graminis f. sp. hordei) is associated with a bust of AOS. Physiol Mol Plant Pathol 52:185–199

    Article  CAS  Google Scholar 

  • von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  PubMed  CAS  Google Scholar 

  • Wen XG, Qiu NW, Lu QT, Lu CM (2005) Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220:486–497

    Article  PubMed  CAS  Google Scholar 

  • Yang JY, Sun Y, Sun AQ, Yi SY, Qin J, Li MH, Liu J (2006) The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol Biol 62:385–395

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Yue XL, Chen XL, Wu GF, Zhang TG, An LZ (2012) Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana. Plant Cell Tiss Organ Cult 108:201–212

    Article  CAS  Google Scholar 

  • Yildiz M, Terzi H (2008) Evaluation of acquired thermotolerance in wheat (Triticum Aestivum and T Durum) cultivars grown in Turkey. Pak J Bot 40(1):317–327

    CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Qian HM, Yu YD, Lian FQ, Tang DQ (2011) Thermotolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiol Plant 33(3):1001–1009

    Article  CAS  Google Scholar 

  • Zhao J, Guo YQ, Kosaihira A, Sakai K (2004) Rapid accumulation and metabolism of polyphosphoinositol and its possible role in phytoalexin biosynthesis in yeast elicitor-treated Cupressus lusitanica cell cultures. Planta 219:121–131

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Wang Z, Jing Y, Wang L, Liu X, Liu Y, Deng X (2009) Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol 71:451–467

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research and Innovation Program of the Shanghai Municipal Education Commission (Tissue Culture and High-yield Cultivation Techniques of Taxus chinensis var. mairei [11CXY60]) and the Key Course Construction Program of the Shanghai Municipal Education Commission (Plant Physiology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Jiang, Y., Zhao, H. et al. Acquired thermotolerance in plants. Plant Cell Tiss Organ Cult 111, 265–276 (2012). https://doi.org/10.1007/s11240-012-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0198-6

Keywords

Navigation