Skip to main content
Log in

Shoot organogenesis in elite clones of Eucalyptus tereticornis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

ISSR:

Inter-simple sequence repeat

NAA:

α-Naphthaleneacetic acid

RAPD:

Random amplified polymorphic DNA

References

  • Arezki O, Boxus P, Kevers C, Gaspar T (2001) Changes in peroxidase activity and level of phenolic compounds during light-induced plantlet regeneration from Eucalyptus camaldulensis Dehn. nodes in vitro. Plant Growth Regul 33:215–219

    Article  CAS  Google Scholar 

  • Barrueto Cid LP, Machado ACM, Carvalheira SRC, Brasieleiro ACM (1999) Plant regeneration from seedling explants of Eucalyptus grandis x E. urophylla. Plant Cell Tiss Organ Cult 56:17–23

    Article  Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust Syst Bot 13:79–148

    Article  Google Scholar 

  • Chandrika M, Thoyajaksha, Ravishankar RV, Ramachandra KK (2008) Assessment of genetic stability of in vitro grown Dictyospermum ovalifolium. Biol Plant 52:735–739

    Article  CAS  Google Scholar 

  • Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric (Piracicaba, Brazil) 62:406–412

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van WG (1994) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680

    Article  CAS  Google Scholar 

  • Holford P, Newbury HJ (1992) The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep 11:93–96

    CAS  Google Scholar 

  • James DJ, Passey AJ, Rugini E (1988) Factors affecting high frequency plant regeneration from apple leaf tissues cultured in vitro. J Plant Physiol 132:148–154

    CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw Hill, New York

    Google Scholar 

  • Joshi P, Dhawan V (2007) Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant 51:22–26

    Article  CAS  Google Scholar 

  • Kumar A, Sood A, Palni LMS, Gupta AK (1999) In vitro propagation of Gladiolus hybridus Hort. Synergetic effect of heat shock and sucrose on morphogenesis. Plant Cell Tiss Organ Cult 57:105–112

    Article  CAS  Google Scholar 

  • Kumar A, Aggarwal D, Gupta P, Reddy MS (2010) Factors affecting in vitro propagation and field establishment of Chlorophytum borivillianum. Biol Plant (in press)

  • Le Roux JJ, Van Staden J (1991) Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol 9:435–477

    CAS  PubMed  Google Scholar 

  • Li X, Krasnyanski SF, Korban SS (2002) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article  CAS  Google Scholar 

  • Liu X, Pijut PM (2008) Plant regeneration from in vitro leaves of mature black cherry (Prunus serotina). Plant Cell Tiss Organ Cult 94:113–123

    Article  Google Scholar 

  • Martin KP, Joseph D, Madassery J, Philip VJ (2003) Direct shoot regeneration from lamina explants of two commercial cut flower cultivars of Anthurium andraeanum hort. In Vitro Cell Dev Biol Plant 39:500–504

    Article  Google Scholar 

  • Martins M, Sarmento D, Oliveira DD (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496

    Article  CAS  PubMed  Google Scholar 

  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss SH, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791

    Article  CAS  Google Scholar 

  • Muralidharan EM, Mascarenhas AF (1987) In vitro plantlet formation by organogenesis in E. camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Rep 6:256–259

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nandi SK, Palni LMS, Rikhari HC (1996) Chemical induction of adventitious root formation in Taxus baccata cuttings. Plant Growth Regul 19:117–122

    Article  CAS  Google Scholar 

  • Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001a) Adventitious bud induction in Eucalyptus globulus labill. In Vitro Cell Dev Biol Plant 37:388–391

    Article  CAS  Google Scholar 

  • Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001b) Somatic embryogenesis in Eucalyptus globulus. Plant Cell Tiss Organ Cult 6:785–788

    Google Scholar 

  • Palombi MA, Lombardo B, Caboni E (2007) In vitro regeneration of wild pear (Pyrus pyraster Burgsd) clones tolerant to Fe-chlorosis and somaclonal variation analysis by RAPD markers. Plant Cell Rep 26:489–496

    Article  CAS  PubMed  Google Scholar 

  • Pinto G, Park YS, Silva, Neves L, Araujo C, Santos C (2008) Factors affecting maintenance, proliferation and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tiss Organ Cult 9:569–578

    Google Scholar 

  • Pius J, George L, Eapen S, Rao PS (1993) Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and Cefotaxime. Plant Cell Tiss Organ Cult 32:91–96

    Article  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2005) Somatic Embryogenesis and plant regeneration in Eucalyptus tereticornis Sm. Curr Sci 88:1311–1316

    CAS  Google Scholar 

  • Rani V, Raina SN (1998) Genetic analysis of enhanced-axillary-branching-derived Eucalyptus tereticornis Smith and E camaldulensis Dehn. Plants. Plant Cell Rep 17:236–242

    Article  CAS  Google Scholar 

  • Sharma SK, Ramamurthy V (2000) Micropropagation of 4-yr-old elite Eucalyptus tereticornis trees. Plant Cell Rep 19:511–518

    Article  CAS  Google Scholar 

  • Subbaiah MM, Minocha SC (1990) Shoot regeneration from stem and leaf callus of Eucalyptus tereticornis. Plant Cell Rep 9(7):370–373

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Fukai S (2001) The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J App Hort 3: 3–12

    Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2006) Shoot bud regeneration from different explants of Bacopa monniera (L.) Wettst. by trimethoprim and bavistin. Plant Cell Rep 25:629–635

    Article  CAS  PubMed  Google Scholar 

  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Res 12:403–411

    Article  CAS  PubMed  Google Scholar 

  • Welander M (1988) Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J Plant Physiol 132:738–744

    Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tiss Organ Cult 37:257–269

    CAS  Google Scholar 

  • Yu Y, Wei ZM (2008) Influences of cefotaxime and carbenicillin on plant regeneration from wheat mature embryos. Biol Plant 52:553–556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi for providing financial support [Scheme No. 38(1158)/07/EMR-II]. Thanks are also due to TIFAC-CORE, Thapar University, Patiala, for the use of the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, D., Kumar, A. & Reddy, M.S. Shoot organogenesis in elite clones of Eucalyptus tereticornis . Plant Cell Tiss Organ Cult 102, 45–52 (2010). https://doi.org/10.1007/s11240-010-9703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9703-y

Keywords

Navigation