Skip to main content
Log in

Alleviation of viper venom induced platelet apoptosis by crocin (Crocus sativus): implications for thrombocytopenia in viper bites

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Viper envenomations are characterized by prominent local and systemic manifestations including hematological alterations. Snake venom metalloproteinases (SVMPs) and phospholipase A2 (PLA2) plays crucial role in the pathophysiology of hemorrhage by targeting/altering the platelets function which may result in thrombocytopenia. Platelets undergo the classic events of mitochondria-mediated apoptotic pathway due to augmented endogenous reactive oxygen species (ROS) levels. The observed anticoagulant effects during viper envenomations could be due to exacerbated platelet apoptosis and thrombocytopenia. Moreover, antivenin treatments are ineffective against the venom-induced oxidative stress; therefore, it necessitates an auxiliary therapy involving antioxidants which can effectively scavenge the endothelium-generated/endogenous ROS and protect the platelets. The present study explored the effects of viper venom on platelet apoptosis and its amelioration by a phytochemical crocin. The study evaluated the Vipera russelli venom-induced apoptotic events including endogenous ROS generation, intracellular Ca2+ mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation and phosphatidylserine externalization which were effectively mitigated when the venom was pre-treated with crocin. The study highlights one of the less studied features of venom-induced secondary complications i.e. platelet apoptosis and sheds light on the underlying basis for venom-induced thrombocytopenia, systemic hemorrhage and in vivo anticoagulant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Girish KS, Kemparaju K (2011) Overlooked issues of snakebite management: time for strategic approach. Curr Top Med Chem 11:2494–2508

    Article  PubMed  CAS  Google Scholar 

  2. Ushanandini S, Nagaraju S, Nayaka SC, Kumar KH, Kemparaju K, Girish KS (2009) The anti-ophidian properties of Anacardium occidentale bark extract. Immunopharmacol Immunotoxicol 31:607–615

    Article  PubMed  Google Scholar 

  3. Sunitha K, Hemshekhar M, Santhosh MS, Kumar MS, Kemparaju K, Girish KS (2011) Inhibition of hemorrhagic activity of viper venoms by N-acetyl cysteine: involvement of N-acetyl and thiol groups. Curr Top Med Chem 11:2589–2600

    Article  PubMed  CAS  Google Scholar 

  4. Sajevic T, Leonardi A, Krizaj I (2011) Haemostatically active proteins in snake venoms. Toxicon 57:627–645

    Article  PubMed  CAS  Google Scholar 

  5. Howes JM, Theakston RDG, Laing GD (2007) Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators. Toxicon 49:734–739

    Article  PubMed  CAS  Google Scholar 

  6. Fox JW, Serrano SM (2008) Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275:3016–3030

    Article  PubMed  CAS  Google Scholar 

  7. Cortelazzo A, Guerranti R, Bini L, Hope-Onyekwere N, Muzzi C, Leoncini R, Pagani R (2010) Effects of snake venom proteases on human fibrinogen chains. Blood Transfus 3:s120–s125

    Google Scholar 

  8. Marinov I, Atanasov VN, Stankova E, Duhalov D, Petrova S, Hubenova A (2010) Severe coagulopathy after Vipera ammodytes ammodytes snakebite in Bulgaria: a case report. Toxicon 56:1059–1066

    Article  Google Scholar 

  9. Kamiguti AS (2005) Platelets as targets of snake venom metalloproteinases. Toxicon 45:1041–1049

    Article  PubMed  CAS  Google Scholar 

  10. Wang WJ, Shih CH, Huang TF (2005) Primary structure and antiplatelet mechanism of a snake venom metalloproteinase, acurhagin, from Agkistrodon acutus venom. Biochimie 87:1065–1077

    Article  PubMed  CAS  Google Scholar 

  11. Cheng AC, Wu HL, Shi GY, Tsai IH (2012) A novel heparin-dependent inhibitor of activated protein C that potentiates consumptive coagulopathy in Russell’s viper envenomation. J Biol Chem 287:15739–15748

    Article  PubMed  CAS  Google Scholar 

  12. Rucavado A, Soto M, Escalante T, Lorı′a GD, Arni R, Gutierrez JM (2005) Thrombocytopenia and platelet hypoggregation induced by Bothrops asper snake venom: toxins involved and their contribution to metalloproteinase-induced pulmonary hemorrhage. Thromb Haemost 94:123–131

    PubMed  CAS  Google Scholar 

  13. Leytin V (2012) Apoptosis in the anucleate platelet. Blood Rev 26:51–63

    Article  PubMed  CAS  Google Scholar 

  14. Jackson SP, Schoenwaelder SM (2010) Procoagulant platelets: are they necrotic? Blood 23:2011–2018

    Article  Google Scholar 

  15. Kaplan ZS, Jackson SP (2011) The role of platelets in atherothrombosis. Hematol Am Soc Hematol Educ Program 2011:51–61

    Article  Google Scholar 

  16. Yamashita KM, Nogueira TO, Senise LV, Cirill MC, Gonçalves LR, Sano- Martins IS, Giorgi R, Santoro ML (2011) Involvement of circulating platelets on the hyperalgesic response evoked by carrageenan and Bothrops jararaca snake venom. J Thromb Haemost 9:2057–2066

    Article  PubMed  CAS  Google Scholar 

  17. Samy RP, Pushparaj PN, Gopalakrishnakone P (2008) A compilation of bioactive compounds from Ayurveda. Bioinformation 3:100–110

    Article  PubMed  Google Scholar 

  18. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4(3):206–220

    Article  PubMed  CAS  Google Scholar 

  19. Santhosh SM, Hemshekhar M, Sunitha K, Thushara RM, Jnaneshwari S, Kemparaju K, Girish KS (2013) Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini Rev Med Chem 13(1):106–123

    Article  PubMed  CAS  Google Scholar 

  20. Sebastin Santhosh M, Hemshekhar M, Thushara RM, Devaraja S, Kemparaju K, Girish KS (2013) Vipera russelli venom-induced oxidative stress and hematological alterations: Amelioration by crocin a dietary colorant. Cell Biochem Funct 31(1):41–50

    Article  PubMed  CAS  Google Scholar 

  21. Hemshekhar M, Sebastin Santhosh M, Sunitha K, Thushara RM, Kemparaju K, Rangappa KS, Girish KS (2012) A dietary colorant crocin mitigates arthritis and associated secondary complications by modulating cartilage deteriorating enzymes, inflammatory mediators and antioxidant status. Biochimie 94(12):2723–2733

    Article  PubMed  CAS  Google Scholar 

  22. Bakshi HA, Sam S, Feroz A, Ravesh Z, Shah GA, Sharma M (2009) Crocin from Kashmiri saffron (Crocus sativus) induces in vitro and in vivo xenograft growth inhibition of Dalton’s lymphoma (DLA) in mice. Asian Pac J Cancer Prev 10(5):887–890

    PubMed  Google Scholar 

  23. Rosado JA, Graves D, Sage SO (2000) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351:429–437

    Article  PubMed  CAS  Google Scholar 

  24. Lopez JJ, Salido GM, Gómez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291

    Article  PubMed  CAS  Google Scholar 

  25. Asai M, Takeuchi K, Uchida S, Urushida T, Katoh H, Satoh H, Yamada S, Hayashi H, Watanabe H (2008) Misinterpretation of the effect of amlodipine on cytosolic calcium concentration with fura-2 fluorospectrometry. Naunyn Schmiedebergs Arch Pharmacol 377:423–427

    Article  PubMed  CAS  Google Scholar 

  26. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  PubMed  CAS  Google Scholar 

  27. Amor NB, Pariente JA, Salido GM, Rosado JA, Bartegi A (2006) Thrombin-induced caspases 3 and 9 translocation to the cytoskeleton is independent of changes in cytosolic calcium in human platelets. Blood Cells Mol Dis 36:392–401

    Article  PubMed  CAS  Google Scholar 

  28. Rosado JA, Lopez JJ, Gomez-Arteta E, Redondo PC, Salido GM, Pariente JA (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209:142–152

    Article  PubMed  CAS  Google Scholar 

  29. Gutierrez JM, Escalante T, Rucavado A (2009) Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon 54:976–987

    Article  PubMed  CAS  Google Scholar 

  30. Luna KPO, da Silva MB, Pereira VRA (2011) Clinical and immunological aspects of envenomations by Bothrops snakes. J Venom Anim Toxins Trop Diseases 17:130–141

    Google Scholar 

  31. Hung DZ, Wu ML, Deng JF, Yang DY, Lin-Shiau SY (2002) Multiple thrombotic occlusions of vessels after Russell’s viper envenoming. Pharmacol Toxicol 91:106–110

    Article  PubMed  CAS  Google Scholar 

  32. Herath N, Wazil A, Kularatne S, Ratnatunga N, Weerakoon K, Badurdeen S, Rajakrishna P, Nanayakkara N, Dharmagunawardane D (2012) Thrombotic microangiopathy and acute kidney injury in hump-nosed viper (Hypnale species) envenoming: a descriptive study in Sri Lanka. Toxicon 60:61–65

    Article  PubMed  CAS  Google Scholar 

  33. Monteiro FN, Kanchan T, Bhagavath P, Kumar GP, Menezes RG, Yoganarasimha K (2012) Clinico-epidemiological features of viper bite envenomation: a study from Manipal, South India. Singap Med J 53:203–207

    CAS  Google Scholar 

  34. Park MH, Son DJ, Kwak DH, Song HS, Oh KW, Yoo HS, Lee YM, Song MJ, Hong JT (2009) Snake venom toxin inhibits cell growth through induction of apoptosis in neuroblastoma cells. Arch Pharm Res 32:1545–1554

    Article  PubMed  CAS  Google Scholar 

  35. Samel M, Trummal K, Siigur E, Siigur J (2012) Effect of HUVEC apoptosis inducing proteinase from Vipera lebetina venom (VLAIP) on viability of cancer cells and on platelet aggregation. Toxicon 60:648–655

    Article  PubMed  CAS  Google Scholar 

  36. Liu WH, Chang LS (2009) Reactive oxygen species and p38 mitogen-activated protein kinase induce apoptotic death of U937 cells in response to Naja nigricollis toxin-gamma. J Cell Mol Med 13:1695–1705

    Article  PubMed  Google Scholar 

  37. Park MH, Jo MR, Won D, Song HS, Han SB, Song MJ, Hong JT (2012) Snake venom toxin from Vipera lebetina turanica induces apoptosis in colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer 12:228

    Article  PubMed  Google Scholar 

  38. Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J (2009) Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab Invest 89:374–384

    Article  PubMed  CAS  Google Scholar 

  39. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sebastin Santhosh. M thank the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, India, for financial assistance (SRF- Ref: 9/119(0191)2K12EMR-I dated 28-02-2012. Authors thank central instrumentation facility, University of Mysore, Institute of Excellence Project, MHRD (Government of India).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Girish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhosh, M.S., Thushara, R.M., Hemshekhar, M. et al. Alleviation of viper venom induced platelet apoptosis by crocin (Crocus sativus): implications for thrombocytopenia in viper bites. J Thromb Thrombolysis 36, 424–432 (2013). https://doi.org/10.1007/s11239-013-0888-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-0888-x

Keywords

Navigation