Skip to main content
Log in

A DFT study of structural-stability, Mulliken charges, MEP, FMO, and NLO properties of trans alkenyl substituted chalcones conformers: theoretical study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this research, density functional theory (DFT) was used with the B3LYP functional hybrid and the 6–311++G(d,p) basis set for the geometry optimization. First, the findings of the scanning for the potential energy surface (PES) for the vinyl chalcone (VC) have shown that the s-cis conformer was more stable than the s-trans conformer. The data also indicated that 1-butenyl chalcone (1-BC) is the most stable conformer and significantly improves the stability of unsubstituted chalcone (CA). VC was shown to be the least stable conformer. Second, the results were further supported by measuring the thermodynamic parameters thermal energy (TE), entropy (S), and heat capacity (Cv). TE, S, and Cv increased with the stability of conformer and decreased with the increased polarity of the solvent. Finally, the computed C = O stretching vibrations indicated that divinyl chalcone (DVC) causes the largest shift in the peak center of the C = O stretching vibrations of CA by a deviation 4.79 cm−1 in the gas phase and 5.75 cm−1 in n-hexane. The UV–Vis spectra for the studied conformers were analyzed by time-dependent density functional theory (TD-DFT) and the results displayed that the most planar conformers DVC and 1-BC have the highest values of maximum wavelength (λmax). The results shown that CA possesses the highest electronegativity (χ) while trans propenyl chalcone (E-PC) possesses the lowest electronegativity. The dipole moment (µ), polarizability (α), and first hyper polarizability (β) were seen to increase with the π-conjugation and solvent polarity. E-PC, 1-BC, and DVC constituted the highest magnitudes of µ, α, and β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available on the main manuscript and supplementary materials.

References

  1. Custodio JMF, Guimarães-Neto JJA, Awad R, Queiroz JE, Verde GMV, Mottin M, Neves BJ, Andrade CH, Aquino GLB, Valverde C (2020) Molecular modelling and optical properties of a novel fluorinated chalcone. Arab J Chem 13(1):3362–3371. https://doi.org/10.1016/j.arabjc.2018.11.010

    Article  CAS  Google Scholar 

  2. Baranovi G (2019) The conformational equilibrium and vibrational properties of chalcone. J Mol Struct 1196. https://doi.org/10.1016/j.molstruc.2019.06.098

    Article  CAS  Google Scholar 

  3. Gomes MN, Braga RC, Grzelak EM, Neves BJ, Muratov E, Ma R, Klein LL, Cho S, Oliveira GR, Franzblau SG, Andrade CH (2017) QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem 137:126–138. https://doi.org/10.1016/j.ejmech

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosa GP, Seca AML, Barreto MDC, Pinto DCGA (2017) Chalcone: A valuable scaffold upgrading by green methods. ACS Sustain Chem Eng 5(9):7467–7480. https://doi.org/10.1021/acssuschemeng.7b01687

    Article  CAS  Google Scholar 

  5. Wachter NM, Rani N, Zolfaghari A, Tarbox H, Mazumder S (2020) DFT investigations of the unusual reactivity of 2-pyridinecarboxaldehyde in base-catalyzed aldol reactions with acetophenone. J Phys Org Chem 33(5):1–14. https://doi.org/10.1002/poc.4048

    Article  CAS  Google Scholar 

  6. Joseph L, Arunsasi BS, Sajan D, Shettigar V (2014) Synthesis, crystal growth, thermal, electro nic and vibrational prop-2-en-1-one : A density functional theory study. J Mol Stru ct 1076:687–697. https://doi.org/10.1016/j.molstruc.2014.08.008

    Article  CAS  Google Scholar 

  7. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42(2):125–137. https://doi.org/10.1016/j.ejmech.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  8. Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer ML, Buhler RD (2000) Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J Agric Food Chem 48(9):3876–84. https://doi.org/10.1021/jf0002995

    Article  CAS  PubMed  Google Scholar 

  9. Mahapatra KD, Bharti K, Asati V (2015) Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 98(15):69–114. https://doi.org/10.1016/j.ejmech.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  10. Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13(10):1813–1815. https://doi.org/10.1016/s0960-894x(03)00197-5

    Article  CAS  PubMed  Google Scholar 

  11. El-Sawy E, Mandour A, Mahmoud K, Islam I, Abo-Salem H (2012) Synthesis, antimicrobial and anti-cancer activities of some new N-ethyl, N-benzyl and N-benzoyl-3-indolyl heterocycles. Acta Pharm 62(2):157–179. https://doi.org/10.2478/v10007-012-0020-3

  12. Dimmock JR, Elias DW, Beazely MA, Kandepu NM (1999) Bioactivities of chalcones. Curr Med Chem 6(12):1125–1149. PMID: 10519918

    Article  CAS  PubMed  Google Scholar 

  13. Karaca H, Kazanci S (2022) The metal sensing applications of chalcones: The synthesis, characterization and theoretical calculations. J Mol Struct 1248(15):131–454. https://doi.org/10.1016/j.molstruc.2021.131454

    Article  CAS  Google Scholar 

  14. Genç H, Zengin M, Yavuz E, Gençer N, Arslan O (2014) Synthesis and tyrosinase inhibitory properties of novel isoquinoline urea/ thiourea derivatives. Artif Cells Nanomed Biotechnol 42(3):178–185. https://doi.org/10.7311/99.2013.785953

    Article  PubMed  Google Scholar 

  15. Mendoza J, Pina F, Basilio N, Guimaraes M, Freitas V, Cruz L (2018) Extending the stability of red and blue colors of malvidin-3-glucoside-lipophilic derivatives in the presence of SDS micelles. Dyes Pigm 151:321–326. https://doi.org/10.1016/j.dyepig.2018.01.007

    Article  CAS  Google Scholar 

  16. Niu GC, Guan L-A, Zheng M-G, Liu G-Y, Li W-Z (2006) Fluorescence water sensor based on covalent immobilization of chalcone derivative. Anal Chim Acta 577(2):264–270. https://doi.org/10.1016/j.aca.2006.06.046

    Article  CAS  PubMed  Google Scholar 

  17. Wei Y, Qin G, Wang W, Bian W, Shuang S, Dong C (2011) Development of fluorescent FeIII sensor based on chalcone. 131(8):1672–1676. https://doi.org/10.1016/j.jlumin.2011.03.062

    Article  CAS  Google Scholar 

  18. Ugwu ID, Ezema EB, Okoro CU, Eze UF, Ekoh CO, Egbujor CM, Ugwuja ID (2015) Synthesis and pharmacological applications of chalcones: A review. Int J Chem Sci 13(1):459–500. https://www.Researchgate.net/publication/281746507

  19. Krupka O, Kharchenko O, Smokal V, Kysil A, Kolendo A (2019) New methacrylic polymers with heterocyclic analogs of stilbene in side chain – promising materials for optoelectronics. Springer Proc Phys 222:131–143. https://doi.org/10.1007/978-3-030-17755-3_9

    Article  CAS  Google Scholar 

  20. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. John Wiley & Sons Inc, Hoboken, pp 106–130

    Google Scholar 

  21. Datta A, Pal S (2005) Effects of conjugation length and donor-acceptor functionalization on the non-linear optical properties of organic push-pull molecules using density functional theory. J Mol Struct THEOCHEM 715(1–3):59–64. https://doi.org/10.1016/j.theochem.2004.10.054

    Article  CAS  Google Scholar 

  22. Kumar PCR, Ravindrachary V, Janardhana K, Manjunath HR, Karegouda P, Crasta V, Sridhar MA (2011) Optical and structural properties of chalcone NLO single crystals. J Mol Struct 1005(1–3):1–7. https://doi.org/10.1016/j.molstruc.2011.07.038

    Article  CAS  Google Scholar 

  23. Yu F, Wang M, Sun H, Shan Y, Du M, Khan A, Usman R, Zhang W, Shan H, Xu C (2017) Tuning the solid-state fluorescence of chalcone crystals via molecular coplanarity and j-aggregate formation. RSC Adv 7(14):8491–8503. https://doi.org/10.1039/C6RA27458G

    Article  CAS  Google Scholar 

  24. Zainuri DA, Abdullah M, Arshad S, Aziz MSA, Krishnan G, Bakhtiar H, Razak IA (2018) Crystal structure, spectroscopic and third-order nonlinear optical susceptibility of linear fused ring dichloro-substituent chalcone isomers. Opt Mater (Amst) 86(9):32–45. https://doi.org/10.1016/j.optmat.2018.09.032

    Article  CAS  Google Scholar 

  25. Głębocka A, Raczyńska ED, Chylewska A, Makowski M (2016) Experimental (FT-IR) and theoretical (DFT) studies on prototropy and H-bond formation for pyrazine-2-amidoxime. J Phys Org Chem 29(7):326–335. https://doi.org/10.1002/poc.3538

    Article  CAS  Google Scholar 

  26. Sholl DS, Steckel JA (2009) Density functional theory. John Wiley & Sons, Inc., Pittsburgh, p 179

    Google Scholar 

  27. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edition. Wiley-VCH Verlag GmbH

  28. Zainuri DA, Arshad S, Khalib NC, Razak IA, Pillai RR, Sulaiman SF, Hashim NS, Ooi KL, Armaković S, Armaković SJ (2017) Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities. J Mol Struct 1128:520–533. https://doi.org/10.1016/j.molstruc.2016.09.022

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJE Jr, Peralta F, Ogliaro MBJJ, Heyd E, Brothers K, Kudin N, Staroverov V, Keith NT, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewsk VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT

  30. Becke DA (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  32. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  33. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (Theochem) 464:211–226. https://doi.org/10.1016/S0166-1280(98)00553-3

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  35. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh, pp 66–67

    Google Scholar 

  36. Jawad MH (2018) Quantum mechanical investigations into thermochemistry properties and electronic, structural of nanocrystals. Al-Mustansiriyah J Sci 29(3):133–138

    Article  Google Scholar 

  37. Balci K, Akyuz S (2008) A vibrational spectroscopic investigation on benzocaine molecule. Vib Spectrosc 48(2):215–228. https://doi.org/10.1016/j.vibspec.2008.02.001

    Article  CAS  Google Scholar 

  38. Sundaraganesan N, Ilakiamani S, Saleem H, Wojciechowski PM, Michalska D (2005) FT-raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochim Acta - Part A Mol Biomol Spectrosc 61(13–14):2995–3001. https://doi.org/10.1016/j.saa.2004.11.016

    Article  CAS  Google Scholar 

  39. Runge E, Gross UKE (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12–19):997–1000. https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  40. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2). https://doi.org/10.1103/RevModPhys.74.601

  41. Macdonell JR, Patchkovskii S, Schuurman SM (2022) A comparison of partial atomic charges for electronically excited states. J Chem Theory Comput 18(2):1061–1071. https://doi.org/10.1021/acs.jctc.1c01101

    Article  CAS  PubMed  Google Scholar 

  42. Govindasamy P, Gunasekaran S, Srinivasan S (2014) Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid. Spectrochim Acta - Part A Mol Biomol Spectrosc 130(15):329–336. https://doi.org/10.1016/j.saa.2014.03.056

    Article  CAS  Google Scholar 

  43. Krishna PM, Revathi BK, Renuka V, Sathya S, Samuel AP (2019) Molecular structure, spectroscopic (FT-IR, FT-raman,13C and 1H NMR) analysis, HOMO-LUMO Energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater Today Proc 8:37–46. https://doi.org/10.1016/j.matpr.2019.02.078

    Article  CAS  Google Scholar 

  44. Maidur SR, Patil PS, Ekbote A, Chia TS, Quah CK (2017) Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1e)-(4-fluorop henyl) methylene]am ino}phenyl)prop-2-en-1-one. Spectrochim Acta - Part A Mol Biomol Spectrosc 184:342–354. https://doi.org/10.1016/j.saa.2017.05.015

    Article  CAS  Google Scholar 

  45. Asiri AM, Balachandran V, Kumar CC, Chandraju S, Quah CK, Fun HK, Karabacak M (2016) Synthesis, single crystal structure, spectroscopic characterization and molecular properties of (2e)-3-(2,6-dichlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-e n-1-one. J Mol Struct 1116:135–145. https://doi.org/10.1016/j.molstruc.2016.02.089

  46. Sheena MY, Yohannan PC, Anto PL, Sapnakumari M, Narayana B, Sarojini BK (2015) Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2e)-1-(2,4-dichlorophenyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one by HF and density functional methods. Spectrochim Acta - Part A Mol Biomol Spectrosc 135:81–92. https://doi.org/10.1016/j.saa.2014.06.140

    Article  CAS  Google Scholar 

  47. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  48. Chattaraj PK, Maiti B, Sarkar U (2003) A unified treatment of chemical reactivity and selectivity. J Phys Chem A 1077(25):4973–4975. https://doi.org/10.1021/jp034707u

    Article  CAS  Google Scholar 

  49. Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F (2021) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-pheny lben zo[d]thiazo le-2(3h)-imine and its para-substituted derivatives: solvent and subs. J Chem Res 45(1–2):147–158. https://doi.org/10.1177/1747519820932091

    Article  CAS  Google Scholar 

  50. Thamarai A, Vadamalar R, Raja M, Muthu S, Narayana B, Ramesh P, Muhamed RR, Sevvanthi S, Aayisha S (2020) Molecular structure interpretation, spectroscopic (FT-IR, FT-Raman), electronic solvation (UV–Vis, HOMO-LUMO and NLO) properties and biological evaluation of (2E)-3-(biphenyl-4-yl)-1-(4-bromophenyl)prop-2-en-1-one: Experimental and computational modeling. Spectrochim Acta - Part A Mol Biomol Spectrosc 226:117609. https://doi.org/10.1016/j.saa.2019.117609

    Article  CAS  Google Scholar 

  51. Shruthi C, Ravindrachary V, Guruswamy B, Prasad DJ, Goveas J, Kumara K, Lokanath NK (2021) Molecular structure, hirshfeld surface and density functional theoretical analysis of a NLO active chalcone derivative single crystal—a quantum chemical approach. J Mol Struct 1228:129739. https://doi.org/10.1016/j.molstruc.2020.129739

    Article  CAS  Google Scholar 

  52. Naik VS, Patil PS, Wong QA, Quah CK, Gummagol NB, Jayanna HS (2020) Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. J Mol Struct 1222:128901. https://doi.org/10.1016/j.molstruc.2020.128901

    Article  CAS  Google Scholar 

  53. Jing LH (2009) (E)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one. Acta Crystallogr Sect E Struct Rep Online 65(10). https://doi.org/10.1107/S1600536809037556

  54. Shyam A, Pradhan AK, Mondal P (2021) A density functional theory investigation on bis(diethylamino)cyclopropenylidene catalyzed synthesis of 1,4-bifunctional compounds. J Phys Org Chem 34(9):1–13. https://doi.org/10.1002/poc.4219

    Article  CAS  Google Scholar 

  55. Valverde C, Ribeiro ÍN, Soares JVB, Baseia B, Osório FAP (2019) Prediction of the linear and nonlinear optical properties of a schiff base derivatives via DFT. Adv Condens Matter Phys. https://doi.org/10.1155/2019/8148392

    Article  Google Scholar 

  56. Sobhi C, Khorief Nacereddine A, Djerourou A, Ríos- Gutiérrez M, Domingo LR (2017) A DFT study of the mechanism and selectivities of the [3 + 2] cycloaddition reaction between 3-(benzylideneamino)oxindole and trans-β-nitrostyrene. J Phys Org Chem 30(6):1–9. https://doi.org/10.1002/poc.3637

    Article  CAS  Google Scholar 

  57. Soares J, Valverde C, Silva ADD, Luz BV, dos Santos DJ, Carvalho EGB, Oliveira YCM, Napolitano HB, Baseia B, Osório FAP (2020) Theoretical study of solvent effects on the hyperpolarizabilities of two chalcone derivatives TT - Estudio Teórico de Los Efectos de Solvente Sobre La Hiperpolarizabilidad de Dos Derivados de La Chalcona TT - Estudo Teórico Dos Efeitos Do Solvente Nas H. Rev Colomb Quím 49(1):33–39. https://doi.org/10.15446/rev.colomb.quim.v1n49.69474

    Article  Google Scholar 

  58. Tamafo Fouegue AD, Tedongmo H, Abdoul Ntieche R, Ghogomu JN (2021) DFT insights into the structure, reactivity and radical scavenging activity of cycloartocarpesin. J Phys Org Chem 34(9):1–13. https://doi.org/10.1002/poc.4245

  59. Wang H, Wang L, Shen S, Zhang W, Li M, Du L, Zheng X, Lee D, Wang H, Wang L (2014) Effects of hydrogen bond and solvent polarity on the C = O stretching of bis (2- thienyl) ketone in solution effects of hydrogen bond and solvent polarity on the C = O stretching of bis (2-thienyl) ketone in solution. 124509(2012). https://doi.org/10.1063/1.3697482

  60. Demir S, Tinmaz F, Dege N, Ilhan IO (2016) Vibrational spectroscopic studies, NMR, HOMO-LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use x-ray diffractions and DFT calculations. J Mol Struct 1108:637–648. https://doi.org/10.1016/j.molstruc.2015.12.057

    Article  CAS  Google Scholar 

  61. Balachandran V, Santhi G, Karpagam V, Lakshmi A (2013) Molecular structure, spectroscopic (FT-IR, FT-Raman), NBO and HOMO-LUMO analyses, computation of thermodynamic functions for various temperatures of 2, 6-dichloro-3-nitrobenzoic acid. Spectrochim Acta - Part A Mol Biomol Spectrosc 110:130–140. https://doi.org/10.1016/j.saa.2013.03.021

    Article  CAS  Google Scholar 

  62. Krishna Priya M, Revathi BK, Renuka V, Sathya S, Samuel Asirvatham P (2019) Molecular structure, spectroscopic (FT-IR, FT-Raman,13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater Today Proc 8:37–46. https://doi.org/10.1016/j.matpr.2019.02.078

    Article  CAS  Google Scholar 

  63. Venkatesan P, Thamotharan S, Ilangovan A, Liang H, Sundius T (2016) Crystal structure, hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid. Spectrochim Acta - Part A Mol Biomol Spectrosc 153:625–636. https://doi.org/10.1016/j.saa.2015.09.002

    Article  CAS  Google Scholar 

  64. Helda MJ, Murugavel S, Rosaline EJ, Dinesh M, Ponnuswamy A (2019) Structure Investigation, spectral characterization, electronic properties, and antimicrobial and molecular docking studies of 3′-(1-benzyl-5-methyl-1h-1,2,3-triazole-4-carbonyl)-1′-methyl-4′-phenyl-2h spiro[acenaphthylen e-1,2′-pyrrolidine]-2-one. J Chinese Chem Soc 66(2):205–217. https://doi.org/10.1002/jccs.201800128

    Article  CAS  Google Scholar 

  65. Benchea AC, Gaina M, Dorohoi DO (2017) Spectral and quantum-mechanical char acterizations of 7-amino-4-trifluoromethyl coumarin. AIP Conf Proc 1796:4–10. https://doi.org/10.1063/1.4972375

    Article  Google Scholar 

  66. Khanam H, Ashraf M, Siddiqui N, Ahmad M, Alam MJ, Shamsuzz SA (2015) Structural elucidation, density functional calculations and contribution of intermolecular interactions in cholest-4-en-3-one crystals: Insights from X-ray and hirshfeld surface analysis. J Mol Struct 1084:274–283. https://doi.org/10.1016/j.molstruc.2014.12.027

    Article  CAS  Google Scholar 

  67. Steed JW, Atwood JL (2013) Supramolecular chemistry, 2nd edition. Wiley, Chichester

  68. Pavia DL, Lampman GM, Kris SG (2001) Pavia - introduction to spectroscopy, a Guide for Students of Organic Chemistry. 3rd Edition, Thomson Learning, Boston, 22-368

  69. Kumer A, Ahmed B, Sharif M, Al-Mamun AA (2017) Theoretical study of aniline and nitrobenzene by computational overview. Asian J Phys Chem Sci 4(2):1–12. https://doi.org/10.9734/ajopacs/2017/38092

    Article  Google Scholar 

  70. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in diels-alder reactions. Tetrahedron 58(22):4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  71. Sun YX, Hao QL, Wei WX, Yu ZX, Lu L, De WX, Wang YS (2009) Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine. J Mol Struct THEOCHEM 904(1–3):74–82. https://doi.org/10.1016/j.theochem.2009.02.036

    Article  CAS  Google Scholar 

  72. Geskin VM, Lambert C, Brédas JL (2003) Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: The remarkable role of polarized aromatic groups. J Am Chem Soc 125(50):15651–15658. https://doi.org/10.1021/ja035862p

    Article  CAS  PubMed  Google Scholar 

  73. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126(6):1977–1979. https://doi.org/10.1103/PhysRev.126.1977

    Article  CAS  Google Scholar 

  74. Kumar A, Deval V, Tandon P, Gupta A, D’Silva ED (2014) Experimental and theoretical (FT-IR, FT-Raman, UV-Vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory. Spectrochim Acta - Part A Mol Biomol Spectrosc 130:41–53. https://doi.org/10.1016/j.saa.2014.03.072

    Article  CAS  Google Scholar 

  75. Targema M, Obi-Egbedi NO, Adeoye MD (2013) Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Comput Theor Chem 1012:47–53. https://doi.org/10.1016/j.comptc.2013.02.020

    Article  CAS  Google Scholar 

  76. Macdonell RJ, Patchkovskii S, Schuurman MS (2022) A comparison of partial atomic charges for electronically excited states. J Chem Theor Comput 18(2):1061–1071. https://doi.org/10.1021/acs.jctc.1c01101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dr Ghazwan F.Fathil for the support provided to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haval A. Hussein.

Ethics declarations

Ethical approval

Not applicable to my research.

Competing interests

It is personal nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5778 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, H.A. A DFT study of structural-stability, Mulliken charges, MEP, FMO, and NLO properties of trans alkenyl substituted chalcones conformers: theoretical study. Struct Chem 34, 2201–2223 (2023). https://doi.org/10.1007/s11224-023-02139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02139-7

Keywords

Navigation