Skip to main content
Log in

Efficient approach for exploring the multiple-channel bimolecular interactions of conformationally flexible reagents. Epoxide ring opening reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Algorithm for generation and assessment of probability of possible reaction pathways for multiple-channel bimolecular interactions is presented. The proposed algorithm comprises a combination of few steps. They include conformational search for reaction intermediate using the molecular mechanics (MMX) approach, based on the obtained conformation construction of structures of transition states and pre-reaction complexes, and calculation activation energies to further determine the probable reaction pathways. The proposed algorithm could be adopted for investigation of chemical and biochemical reactions of different types. Here, we have considered the reaction of bicyclo[2.2.1]hept-5-en-endo-2-ylmethylamine (1) with glycidyl ether (2) in a neutral environment that proceeds through SN2-like mechanism forming bipolar ion (3) which is a good starting point for identification of the reaction channels. Conformational properties of intermediate (3) have been investigated using stochastic conformational search. From the 95 localized conformations within 10 kcal/mol of global minimum that have been obtained, 63 unique transition state conformations were generated and optimized by using the PM7 and M062X/6-31G(d) methods for accurate estimation of overall rate constant of reaction. The most energetically favorable pathways have been investigated at the M062X/6-31G(d) level of theory taking into account the influence of solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fukui K (1981) The path of chemical-reactions. The IRC approach. Acc Chem Res 14:363–368

    CAS  Google Scholar 

  2. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    CAS  Google Scholar 

  3. Trygubenko SA, Wales DJ (2004) A doubly nudged elastic band method for finding transition states. J Chem Phys 120:2082–2094

    CAS  PubMed  Google Scholar 

  4. Weinan E, Ren W, Vanden-Eijnden E (2002) String method for the study of rare events. Phys Rev B 66:052301

    Google Scholar 

  5. Peters B, Heyden A, Bell AT, Chakraborty A (2004) A growing string method for determining transition states: comparison to the nudged elastic band and other string methods. J Chem Phys 120:7877–7886

    CAS  PubMed  Google Scholar 

  6. Zimmerman PM (2015) Single-ended transition state finding with the growing string method. J Comput Chem 36:601–611

    CAS  PubMed  Google Scholar 

  7. Ohno K, Maeda S (2004) A scaled hypersphere search method for the topography of reaction pathways on the potential energy surface. Chem Phys Lett 384:277–282

    CAS  Google Scholar 

  8. Maeda S, Ohno K (2005) Global mapping of equilibrium and transition structures on potential energy surfaces by the scaled hypersphere search method: applications to ab initio surfaces of formaldehyde and propyne molecules. J Phys Chem A 109:5742–5753

    CAS  PubMed  Google Scholar 

  9. Ohno K, Maeda S (2006) Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues. J Phys Chem A 110:8933–8941

    CAS  PubMed  Google Scholar 

  10. Maeda S, Ohno K, Morokuma K (2013) Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys Chem 15:3683–3701

    CAS  Google Scholar 

  11. Maeda S, Morokuma K (2010) Communications: a systematic method for locating transition structures of A +B=X type reactions. J Chem Phys 132:241102

    PubMed  Google Scholar 

  12. Maeda S, Morokuma K (2011) Finding reaction pathways of type A + B = X: toward systematic prediction of reaction mechanisms. J Chem Theory Comput 7:2335–2345

    CAS  PubMed  Google Scholar 

  13. Maeda S, Taketsugu T, Morokuma K (2014) Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method. J Comput Chem 35:166–173

    CAS  PubMed  Google Scholar 

  14. Maeda S, Abe E, Hatanaka M, Taketsugu T, Morokuma K (2012) Exploring potential energy surfaces of large systems with artificial force induced reaction method in combination with ONIOM and microiteration. J Chem Theory Comput 8:5058–5063

    CAS  PubMed  Google Scholar 

  15. Maeda S, Harabuchi Y, Takagi M, Taketsugu T, Morokuma K (2016) Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chem Rec 16:2232–2248

    CAS  PubMed  Google Scholar 

  16. Maeda S, Harabuchi Y, Takagi M, Saita K, Suzuki K, Ichino T, Sumiya Y, Sugiyama K, Ono Y (2017) Implementation and performance of the artificial force induced reaction method in the GRRM17 program. J Comput Chem 39:233–250

    PubMed  PubMed Central  Google Scholar 

  17. Martínez-Núñez E (2015) An automated transition state search using classical trajectories initialized at multiple minima. Phys Chem 17:14912–14921

    Google Scholar 

  18. Martínez-Núñez E (2015) An automated method to find transition states using chemical dynamics simulations. J Comput Chem 36:222–234

    PubMed  Google Scholar 

  19. Wilhelm MJ, Martínez-Núñez E, González-Vázquez J, Vázquez SA, Smith JM, Dai HL (2017) Is photolytic production a viable source of HCN and HNC in astrophysical environments? A laboratory-based feasibility study of methyl cyanoformate. Astrophys J 849:12

    Google Scholar 

  20. Perez-Soto R, Vazquez SA, Martinez-Nunez E (2016) Photodissociation of acryloyl chloride at 193 nm: interpretation of the product energy distributions, and new elimination pathways. Phys Chem 18:5019–5026

    CAS  Google Scholar 

  21. Vazquez SA, Martinez-Nunez E (2015) HCN elimination from vinyl cyanide: product energy partitioning, the role of hydrogen-deuterium exchange reactions and a new pathway. Phys Chem 17:6948–6955

    CAS  Google Scholar 

  22. Rossich Molina E, Salpin JY, Spezia R, Martinez-Nunez E (2016) On the gas phase fragmentation of protonated uracil: a statistical perspective. Phys Chem 18:14980–14990

    CAS  Google Scholar 

  23. Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J, Cabaleiro-Lago E, Estévez CM, Fernández B, Fernández-Ramos A, Vázquez SA (2018) Influence of multiple conformations and paths on rate constants and product branching ratios. Thermal Decomposition of 1-Propanol Radicals. J Phys Chem A 122:4790–4800

    CAS  PubMed  Google Scholar 

  24. Fenard Y, Gil A, Vanhove G, Carstensen HH, Van Geem KM, Westmoreland PR, Herbinet O, Battin-Leclerc F (2018) A model of tetrahydrofuran low-temperature oxidation based on theoretically calculated rate constants. Combust Flame 191:252–269

    CAS  Google Scholar 

  25. Varela JA, Vazquez SA, Martinez-Nunez E (2017) An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis. Chem Sci 8:3843–3851

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmerman PM (2013) Automated discovery of chemically reasonable elementary reaction steps. J Comput Chem 34:1385–1392

    CAS  PubMed  Google Scholar 

  27. Zimmerman PM (2014) Navigating molecular space for reaction mechanisms: an efficient, automated procedure. Mol Simul 41:43–54

    Google Scholar 

  28. Zimmerman PM (2013) Growing string method with interpolation and optimization in internal coordinates: methods and examples. J Chem Phys 138:184102

    PubMed  Google Scholar 

  29. Nett AJ, Wanxiang Z, Zimmerman PM, Montgomery J (2015) Highly active nickel catalysts for C-H functionalization identified through analysis of off-cycle intermediates. J Am Chem Soc 137:7636–7639

    CAS  PubMed  Google Scholar 

  30. Pendleton IM, Perez-Temprano MH, Sanford MS, Zimmerman PM (2016) Experimental and computational assessment of reactivity and mechanism in C(sp3)-N bond-forming reductive elimination from palladium(IV). J Am Chem Soc 138:6049–6060

    CAS  PubMed  Google Scholar 

  31. Zhao Y, Nett AJ, McNeil AJ, Zimmerman PM (2016) Computational mechanism for initiation and growth of poly(3-hexylthiophene) using palladium N-heterocyclic carbene precatalysts. Macromolecules 49:7632–7641

    CAS  Google Scholar 

  32. Khomutnyk YY, Argüelles AJ, Winschel GA, Sun Z, Zimmerman PM, Nagorny P (2016) Studies of the mechanism and origins of enantioselectivity for the chiral phosphoric acid-catalyzed stereoselective spiroketalization reactions. J Am Chem Soc 138:444–456

    CAS  PubMed  Google Scholar 

  33. Tay JH, Argüelles AJ, DeMars MD, Zimmerman PM, Sherman DH, Nagorny P (2017) Regiodivergent glycosylations of 6-deoxy-erythronolide B and oleandomycin-derived macrolactones enabled by chiral acid catalysis. J Am Chem Soc 139:8570–8578

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Haberson S (2015) Sampling reactive pathways with random walks in chemical pace: applications to molecular dissociation and catalysis. J Chem Phys 143:094106

    Google Scholar 

  35. Haberson S (2016) Automated prediction of catalytic mechanism and rate law using graph-based reaction path sampling. J Chem Theory Comput 12:1786–1798

    Google Scholar 

  36. Dewyer AL, Zimmerman PM (2017) Finding reaction mechanisms, intuitive or otherwise. Org Biomol Chem 15:501–504

    CAS  PubMed  Google Scholar 

  37. Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS (2016) Iron(III)-catalyzed carbonyl olefin metathesis. Nature 533:374–379

    CAS  PubMed  Google Scholar 

  38. Ludwig JR, Phan S, McAtee CC, Zimmerman PM, Devery JJ, Schindler CS (2017) Mechanistic investigations of the iron(III)-catalyzed carbonyl-olefin metathesis. J Am Chem Soc 139:10832–10842

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dewyer AL, Zimmerman PM (2017) Simulated mechanism for palladium-catalyzed, directed γ-arylation of piperidine. ACS Catal 7:5466–5477

    CAS  Google Scholar 

  40. Yang M, Zou J, Wang G, Li S (2017) Automatic reaction pathway search via combined molecular dynamics and coordinate driving method. J Phys Chem A 121:1351–1361

    CAS  PubMed  Google Scholar 

  41. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218

    CAS  Google Scholar 

  42. Schlegel HB (1984) Estimating the Hessian for gradient-type geometry optimizations. Theor Chem Accounts 66:333–340

    CAS  Google Scholar 

  43. Peng CY, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  44. Peng CY, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    CAS  Google Scholar 

  45. Basilevsky MV, Shamov AG (1981) The local definition of the optimum ascent path on a multi-dimensional potential energy surface and its practical application for the location of saddle points. Chem Phys 60:347–358

    Google Scholar 

  46. Pal’chikov VA, Svyatenko LK, Plakhotnii IN, Kas’yan LI (2013) Experimental and theoretical study of the reaction between bicyclo[2.2.1]hept-5-en-endo-2-ylmethylamine and 2-[(2-allylphenoxy)methyl]oxirane. Zhurnal Organicheskoi Khimii 49:704–708

    Google Scholar 

  47. Valiaeva N, Wyles DL, Schooley RT, Hwu JB, Beadle JR, Prichard MN, Hostetler KY (2011) Synthesis and antiviral evaluation of 9-(S)-[3-alkoxy-2-(phosphonomethoxy)-propyl]nucleoside alkoxyalkyl esters: inhibitors of hepatitis C virus and HIV-1 replication. Bioorg Med Chem 19:4616–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ayers TA, Watson TJN, Subotkowski W, Daniel J, Webster M (2012) The use of glycidyl ethers involving aziridinium intermediates and other methodology for the preparation of enantiomerically pure drug candidates. Org Process Res Dev 16:141–147

    CAS  Google Scholar 

  49. de Almeida CG, Reis SG, de Almeida AM, Diniz CG, da Silva VL, Le Hyaric M (2011) Synthesis and antibacterial activity of aromatic and heteroaromatic amino alcohols. Chem Biol Drug Des 78:876–880

    PubMed  Google Scholar 

  50. PCModel V 9.0. Molecular modeling software for Windows operating system Apple Macintosh OS Linux and Unix. 2004. Serena Software Box 3076 Bloomington, IN 47402-3076 (812)-333-0823

  51. Gajewski JJ, Gilbert KE, McKelvey J (1990) In: Liotta D (ed) MMX: an enhanced version of MM2, in Advances in Molecular Modeling, vol 2. JAI Press, Greenwich, p 65

    Google Scholar 

  52. Stewart JJP (2007) Optimization of parameters for semi-empirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stewart JJP (2013) Optimization of parameters for semi-empirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    CAS  PubMed  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  55. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  56. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem 110:5121–5129

    CAS  Google Scholar 

  57. Cížek J (1969) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv Chem Phys 14:35–89

    Google Scholar 

  58. Purvis GD, Bartlett RJ (1982) Full coupled-cluster singles and doubles model–the inclusion of disconnected triples. J Chem Phys 76:1910–1918

    CAS  Google Scholar 

  59. Scuseria GE, Janssen CL, Schaefer HF (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89:7382–7387

    CAS  Google Scholar 

  60. Scuseria GE, Schaefer HF (1989) Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration-interaction (QCISD). J Chem Phys 90:3700–3703

    CAS  Google Scholar 

  61. MOPAC2016, James J. P. Stewart, Stewart computational chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016)

  62. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT

  63. NIST computational chemistry comparison and benchmark database NIST Standard Reference Database Number 101 Release 20, August 2019, Editor: Russell D. Johnson III http://cccbdb.nist.gov/. https://doi.org/10.18434/T47C7Z

  64. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    CAS  PubMed  Google Scholar 

Download references

Funding

The computation time was provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562 and XSEDE award allocation Number TG-DMR110088. This study was supported by the Ministry of Education and Science of Ukraine (grant 0119U100724). Jerzy Leszczynski is thankful to the National Science Foundation (NSF/CREST HRD-1547754) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy I. Okovytyy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borysenko, I.O., Sviatenko, L.K., Okovytyy, S.I. et al. Efficient approach for exploring the multiple-channel bimolecular interactions of conformationally flexible reagents. Epoxide ring opening reaction. Struct Chem 32, 581–589 (2021). https://doi.org/10.1007/s11224-020-01663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01663-0

Keywords

Navigation