Skip to main content
Log in

A seed-based structural model for constructing rhombic quasilattice with 7-fold symmetry

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A seed-based theoretical model with built-in local degree of freedom for constructing rhombic quasilattice with 7-fold symmetry is presented. This new approach mitigates a key limitation with existing structural models for describing quasicrystals, which do not incorporate atomic fluctuations or phasonic flips in their approaches. Here, we propose a structural model that works in concert with the seed-initiated nucleation growth models of quasicrystals and incorporates a degree of flexibility that allows the lattice to rearrange locally without affecting the global long-range order. This approach suggests that the position of high-symmetry motifs locally and globally is defined by one long-range framework and not based on local rules (i.e., inflation, deflation, substitution, matching, overlapping, etc.). The proposed model is based on building a hierarchical network that allows the self-similar quasilattice to expand infinitely without any gaps, overlaps, or mismatches. The use of a global relational logic provides scientists, artists, and teachers with a simple method for creating a wide variety of complicated hierarchical quasilattice formations without the need for any specialized software or complicated mathematics and could possibly provide a deeper understanding of how the atoms interact to form their complicated long-range quasicrystalline formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Phys Rev Lett 53:1951

    Article  CAS  Google Scholar 

  2. Steurer W (2012) Chem Soc Rev 41:6719

    Article  CAS  Google Scholar 

  3. Maciá E (2006) Rep Prog Phys 69:397

    Article  Google Scholar 

  4. Fischer S, Exner A, Zielske K, Perlich J, Deloudi S, Steurer W, Lindner P, Förster S (2011) Proc Natl Acad Sci U S A 108:1810

    Article  CAS  Google Scholar 

  5. Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK (2004) Nature 428:157

    Article  CAS  Google Scholar 

  6. Zeng X (2005) Curr Opin Colloid Interface Sci 9:384

    Article  CAS  Google Scholar 

  7. Takano A, Kawashima W, Noro A, Isono Y, Tanaka N, Dotera T, Matsushita Y (2005) J Polym Sci Polym Phys 43:2427

    Article  CAS  Google Scholar 

  8. Hayashida K, Dotera T, Takano A, Matsushita Y (2007) Phys Rev Lett 98:195502

    Article  Google Scholar 

  9. Fischer S, Exner A, Zielska K, Perlich J, Deloudi S, Steurer W, Lindner P, Förster S (2011) Proc Natl Acad Sci 108:1810

    Article  CAS  Google Scholar 

  10. Steurer W, Deloudi S (2009) Crystallography of quasicrystals: concepts, methods and structures. Springer, Heidelberg, New York

    Google Scholar 

  11. Steurer W, Widmer DS (2007) J Phys D Appl Phys 40:R229–R247

    Article  CAS  Google Scholar 

  12. Roichman Y, Grier DG (2005) Opt Express 13:5434–5439

    Article  Google Scholar 

  13. Mikhael J, Schmiedeberg M, Rausch S, Roth J, Stark H, Bechinger C (2010) Proc Natl Acad Sci U S A 107:7214

    Article  CAS  Google Scholar 

  14. Schmiedeberg M, Stark H (2012) J Phys Condens Matter 24:284101

    Article  Google Scholar 

  15. Dong JW, Chang ML, Huang XQ, Hang ZH, Zhong ZC, Chen WJ, Boriskina SV (2015) Nat Photonics 9:422

    Article  Google Scholar 

  16. Boriskina SV (2015) Nat Photonics 9:422–424

    Article  CAS  Google Scholar 

  17. Martinsons M, Sandbrink M, Schmiedeberg M (2014) Acta Phys Pol A 126:568

    Article  CAS  Google Scholar 

  18. Schmiedeberg M, Achim CV, Hielscher J, Kapfer SC, Löwen H (2017) Phys Rev E 96:012602

    Article  CAS  Google Scholar 

  19. Bernal JD (1968) Q Rev Biophys 1:81–87

    Article  CAS  Google Scholar 

  20. Mackay AL (1986) Acta Cryst A 42:55–56

    Article  Google Scholar 

  21. Mackay AL (1997) J Math Chem 21(2):197–209

    Article  CAS  Google Scholar 

  22. Schoen AH The geometry garret. http://schoengeometry.com/cinfintil.html. Accessed 22 May 2018

  23. Madison AE (2018) Struct Chem 29:645–655

    Article  CAS  Google Scholar 

  24. Lancon F, Billard L (1993) Phase Transit 44:37–46

    Article  CAS  Google Scholar 

  25. Franco BJO (1993) Phys Lett A 178:119–122

    Article  Google Scholar 

  26. Nischke KP, Danzer L (1996) Discret Comput Geom 15:221–236

    Article  Google Scholar 

  27. García-Escudero J (1996) J Phys A Math Gen 29:6877–6870

    Article  Google Scholar 

  28. Harriss EO (2005) Discrete Comput Geom 34:523–536

    Article  Google Scholar 

  29. Pelletier M, Bonner J (2012) In: Bosch R, McKenna D, Sarhangi R (eds) Proceedings of bridges 2012: mathematics, music, art, architecture, culture. Phoenix, Tessellations Publishing

    Google Scholar 

  30. Aboufadil Y, Thalal A, Raghni MAEI (2014) J Appl Crystallogr 47:630–641

    Article  CAS  Google Scholar 

  31. Gähler F, Kwan EE, Maloney GR (2015) Discrete Math Theor Comput Sci 17(1):3955–3412

    Google Scholar 

  32. Kari J, Rissanen M (2016) Discrete Comput Geom 55:972–996

    Article  Google Scholar 

  33. Madison AE (2017) Struct Chem 28:57–62

    Article  CAS  Google Scholar 

  34. Pautze S (2017) Symmetry 9:19

    Article  Google Scholar 

  35. Savard JJG An example of a heptagonal tiling. http://www.quadibloc.com/math/hept01.htm Accessed 28 May 2018

  36. Buganski I, Chodyn M, Strzalka R, Wolny J (2017) J Alloys Compd 710:92–101

    Article  CAS  Google Scholar 

  37. Al Ajlouni R (2011) Philos Mag 91:2728–2738

    Article  Google Scholar 

  38. Al Ajlouni R (2012) Acta Cryst A 68:235–243

    Article  Google Scholar 

  39. Al Ajlouni R (2013) In: Schmid S, Withers RL, Lifshitz R (eds) Aperiodic crystals. Amsterdam, Springer

    Google Scholar 

  40. Ajlouni R (2017) J Phys Conf Ser 809(1) http://iopscience.iop.org/article/10.1088/1742-6596/809/1/012028/pdf

  41. Yamamoto A, Takakura H (2008) In: Fujiwara T, Ishii Y (eds) Quasicrystals. Amsterdam, Elsevier

    Google Scholar 

  42. Abe E, Yan Y, Pennycook SJ (2004) Nat Mater 3:759

    Article  CAS  Google Scholar 

  43. Lord EA, Ranganathan S, Kulkarni UD (2000) Curr Sci 78(1):64

    Google Scholar 

  44. Baake M, Grimm U (2013) Aperiodic Order. Vol 1. A Mathematical Invitation. Encyclopedia of Mathematics and its Applications, 149. Cambridge University Press, Cambridge

    Google Scholar 

  45. Goodman-Strauss C (1998) Ann Math 147:181

    Article  Google Scholar 

  46. Rust D, Spindeler T (2018) Indag Math 29:1131

    Article  Google Scholar 

  47. Frank N, Sadun L (2014) Geom Dedicata 171:149

    Article  Google Scholar 

  48. Jeong HC, Steinhardt PJ (1994) Phys Rev Lett 73:1943

    Article  CAS  Google Scholar 

  49. Destainville N, Widom M, Mosseri R, Bailly F (2005) J Stat Phys 120:799

    Article  Google Scholar 

  50. Widom M (1990) In: Jaric MV, Lundqvist S (eds) Quasicrystals. World Scientific, p 337

  51. Henley CL (1991) In: DiVincenzo DP, Steinhardt PJ (eds) Quasicrystals: the state of the art. World Scientific, Singapore, p 429

    Chapter  Google Scholar 

  52. Palberg T (1999) J Phys Condens Matter 11:R323

    Article  CAS  Google Scholar 

  53. Schilling T, Schöpe HJ, Oettel M, Opletal G, Snook I (2010) Phys Rev Lett 105:025701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Ajlouni.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajlouni, R. A seed-based structural model for constructing rhombic quasilattice with 7-fold symmetry. Struct Chem 29, 1875–1883 (2018). https://doi.org/10.1007/s11224-018-1169-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1169-2

Keywords

Navigation