Skip to main content
Log in

Constructing Penrose-like tilings with 7-fold symmetry

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Penrose-like tilings with higher-order rotational symmetry are discussed. Two new examples of recursive rhombic tilings with 7-fold symmetry are derived. The entangled inflation/deflation rules cyclically permute the characteristic 7-fold patches and provide a possibility of expanding the tilings up to infinity without additional ad hoc rearrangements. The derived tilings are self-similar and fully coincide with themselves after inflations and deflations. The main structural motif is presented by repeatedly appearing seven-pointed stars surrounded by similar seven-pointed stars. Characteristic patches demonstrate mutual metamorphoses. The patches cyclically morph each into another while the tilings as a whole remain self-consistent. The results of the study can be used for the development of new artificial materials with heptagonal symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boriskina SV (2015). Nat Photonics 9:422–424

    Article  CAS  Google Scholar 

  2. Dong JW, Chang ML, Huang XQ, Hang ZH, Zhong ZC, Chen WJ, Huang ZY, Chan CT (2015). Phys Rev Lett 114:163901

    Article  Google Scholar 

  3. Madison AE (2017). Struct Chem 28:57–62

    Article  CAS  Google Scholar 

  4. Mackay AL (1982). Physica 114A:609–613

    Article  CAS  Google Scholar 

  5. Schoen AH. The geometry garret. http://schoengeometry.com/c-infintil.html. Accessed 15 Nov. 2017

  6. Danzer L (1995) Symmetry: culture and Science 6:133–136

  7. Nischke KP, Danzer L (1996). Discrete Comput Geom 15:221–236

    Article  Google Scholar 

  8. Baranidharan S, Balagurusamy VSK, Srinivasan A, Gopal ESR, Sasisekharan V (1989). Phase Transit 16/17:621–626

    Article  Google Scholar 

  9. Harriss EO (2005). Discrete Comput Geom 34:523–536

    Article  Google Scholar 

  10. Socolar JES (1990). Commun Math Phys 129:599–619

    Article  Google Scholar 

  11. Gähler F, Kwan EE, Maloney GR (2015). Discrete Comput Geom 53:445–465

    Article  Google Scholar 

  12. Kari J, Rissanen M (2016). Discrete Comput Geom 55:972–996

    Article  Google Scholar 

  13. Pautze S (2017). Symmetry 9:19

    Article  Google Scholar 

  14. Savard JJG. An example of a heptagonal tiling. http://www.quadibloc.com/math/hept01.htm. Accessed 15 Nov 2017

  15. Frettlöh D, Gähler F. Tilings encyclopedia https://tilings.math.uni-bielefeld.de. Accessed 15 Nov 2017

  16. Hibma T. Aperiodic rhomb tiling. http://www.hibma.org/wpaperiodictiling/. Accessed 15 Nov 2017

  17. Aboufadil Y, Thalal A, Raghni MAEI (2014). J Appl Crystallogr 47:630–641

    Article  CAS  Google Scholar 

  18. Baake M, Grimm U (2013) Aperiodic order. Volume 1: a mathematical invitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Madison AE (2015). Struct Chem 26:923–942

    Article  CAS  Google Scholar 

  20. de Bruijn NG (1981). Kon Nederl Akad Wetensch Proc Ser A 84:39–52

    Article  Google Scholar 

  21. de Bruijn NG (1981). Kon Nederl Akad Wetensch Proc Ser A 84:53–66

    Article  Google Scholar 

  22. Steurer W (2007). Phil Mag 87:2707–2712

    Article  CAS  Google Scholar 

  23. Orsini-Rosenberg H, Steurer W (2011). Phil Mag 91:2567–2578

    Article  CAS  Google Scholar 

  24. Shoemaker DP, Shoemaker CB (1986). Acta Cryst B42:3–11

    Article  CAS  Google Scholar 

  25. Mosseri R, DiVincenzo DP, Sadoc JF, Brodsky MH (1985). Phys Rev B 32:3974–4000

    Article  CAS  Google Scholar 

  26. Mosseri R, Sadoc JF (2012). Struct Chem 23:1071–1078

    Article  CAS  Google Scholar 

  27. Lord EA, Ranganathan S (2001). Eur Phys J D 15:335–343

    Article  CAS  Google Scholar 

  28. Lord EA (2002). Struct Chem 13:305–314

    Article  CAS  Google Scholar 

  29. Shevchenko VY, Madison AE, Mackay AL (2007). Struct Chem 18:343–346

    Article  CAS  Google Scholar 

  30. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001). Acc Chem Res 34:319–330

    Article  CAS  Google Scholar 

  31. Bulienkov NA, Zheligovskaya EA (2017). Struct Chem 28:75–103

    Article  CAS  Google Scholar 

  32. Shevchenko VY, Samoilovich MI, Talis AL, Madison AE (2005). Glas Phys Chem 31:823–828

    Article  CAS  Google Scholar 

  33. Sliwiak J, Jaskolski M, Dauter Z, McCoy AJ, Read RJ (2014). Acta Cryst D 70:471–480

    Article  CAS  Google Scholar 

  34. Boström M, Lidin S (2002). J Solid State Chem 166:53–57

    Article  Google Scholar 

  35. Mikhael J, Schmiedeberg M, Rausch S, Roth J, Stark H, Bechinger C (2010). Proc Natl Acad Sci 107:7214–7218

    Article  CAS  Google Scholar 

  36. Schmiedeberg M, Stark H (2012). J Phys Condens Matter 24:284101

    Article  Google Scholar 

  37. Rottler J, Greenwood M, Ziebarth B (2012). J Phys Condens Matter 24:135002

    Article  Google Scholar 

  38. Xu F, Miras HN, Scullion RA, Long DL, Thiel J, Cronin L (2012). Proc Natl Acad Sci 109:11609–11612

    Article  CAS  Google Scholar 

  39. Scullion RA, Surman AJ, Xu F, Mathieson JS, Long DL, Haso F, Liu T, Cronin L (2014). Angew Chem Int Ed 53:10032–10037

    Article  CAS  Google Scholar 

  40. Dal Negro L, Wang R, Pinheiro FA (2016). Crystals 6:161

    Article  Google Scholar 

  41. Thoms S, Macintyre DS, Docherty KE, Weaver JMR (2014). Microelectron Eng 123:9–12

    Article  CAS  Google Scholar 

  42. Yuan S, Yu X, Topf M, Ludtke SJ, Wang X, Akey CW (2010). Structure 18:571–583

    Article  CAS  Google Scholar 

  43. Zhou M, Li Y, Hu Q, Bai X, Huang W, Yan C, Scheres SHW, Shi Y (2016). Genes Dev 29:2349–2361

    Article  Google Scholar 

  44. Lu PJ, Steinhardt PJ (2007). Science 315:1106–1110

    Article  CAS  Google Scholar 

  45. Dirac PAM (1963). Sci Amer 208:45–53

    Article  Google Scholar 

  46. Kaplan CS, Salesin DH (2004). ACM Trans Graph 23:97–119

    Article  Google Scholar 

  47. Cromwell PR (2010). J Math Arts 4:73–85

    Article  Google Scholar 

  48. Cromwell PR (2010). J Math Arts 4:119–136

    Article  Google Scholar 

Download references

Acknowledgments

I thank Jelena R. Kambak for proofreading and writing assistance.

Funding

This work is partially supported by the Ministry of Education and Science of the Russian Federation, Grant 16.8549.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Madison.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madison, A. Constructing Penrose-like tilings with 7-fold symmetry. Struct Chem 29, 645–655 (2018). https://doi.org/10.1007/s11224-018-1083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1083-7

Keywords

Navigation