Skip to main content
Log in

Hopf fibrations and frustrated matter

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Frustrated order appear in different scientific contexts like complex crystals, amorphous materials, liquid crystals, foams and even biological organizations, with scales ranging from the atomic level up to macroscopic scales. In this article, we shall first review several cases where it is possible to release frustration and allows for an unfrustrated structural model by curving the underlying Euclidean space into a positively curved space, the hypersphere S 3. The real Euclidean structure is then analyzed in terms ordered regions interrupted by topological defects, whose presence and density is directly related to the change of curvature from S 3 to R 3. We then focus on a rather fascinating geometrical structure, the Hopf fibration, which can be defined on the hypersphere, and show how this tool is very well suited to describe the defect geometries (both linear, helicoidal and bidimensional) which arises from the decurving procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Coxeter HSM (1973) Regular polytopes. Dover publication Inc., New York

    Google Scholar 

  2. Sadoc J-F, Mosseri R (1984) J Non Cryst Solids 61–62:487

    Article  Google Scholar 

  3. Sadoc J-F, Mosseri R (1999) Geometrical frustration. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Sadoc JF, Non-Cryst J (1981) Solids 44:1

    CAS  Google Scholar 

  5. Nelson D (1983) Phys Rev Lett 50:982

    Article  CAS  Google Scholar 

  6. Nelson D (1983) Phys Rev B 28:5515

    Article  CAS  Google Scholar 

  7. Sadoc J-F, Mosseri R (1981) J Phys C4(42):189–192

    Google Scholar 

  8. Sadoc J-F, Mosseri R (1982) Philos Mag B 45:467–483

    CAS  Google Scholar 

  9. Mosseri R, Sadoc JF (1985) J Non Cryst Solids 77–78:179–190

    Article  Google Scholar 

  10. DiVincenzo D, Mosseri R, Brodsky MH, Sadoc J-F (1984) Phys Rev B 29:5934

    Article  CAS  Google Scholar 

  11. Mosseri R, DiVincenzo DP, Sadoc JF, Brodsky MH (1985) Phys Rev B 32:3974–4000

    Article  CAS  Google Scholar 

  12. Wright DC, Mermin ND (1989) Rev Mod Phys 61:385

    Article  CAS  Google Scholar 

  13. Sethna JP, Wright DC, Mermin ND (1983) Phys Rev Lett 51:467

    Article  CAS  Google Scholar 

  14. Sethna JP (1983) Phys Rev Lett 51:2198

    Article  Google Scholar 

  15. Sethna JP (1985) Phys Rev B 31:6278

    Article  CAS  Google Scholar 

  16. Bouligand Y (1990) J Phys France 51:C7–C35

    Google Scholar 

  17. Gaill F (1990) J Phys 51:C7–C169

    Google Scholar 

  18. Pelta J, Durand D, Doucet J, Livolant F (1996) Biophys J 71:48

    Article  CAS  Google Scholar 

  19. Hyde S, Anderson S (1984) Z Kristallogr 168:221

    Article  Google Scholar 

  20. Sadoc J-F, Charvolin J (1986) J Phys 47:683

    Article  CAS  Google Scholar 

  21. Ou-Yang, Zhong-Can (1990) Phys Rev A 41:4517

    Article  CAS  Google Scholar 

  22. Mutz M, Bensimon D (1991) Phys Rev A 43:4525

    Article  CAS  Google Scholar 

  23. Michalet X, Bensimon D, Fourcade B (1994) Phys Rev Lett 72:168

    Article  CAS  Google Scholar 

  24. Willmore TJ (1993) Riemannian geometry, Chap 7. Oxford University Press, Oxford

    Google Scholar 

  25. Mosseri R, Sadoc J-F, Charvolin J (1992) The structure and conformation and amphiphilic membranes. In: Lipowski R, Richter D, Kremer K (eds) Springer proceedings in physics, vol 66. Springer, Berlin, pp 24–29

    Google Scholar 

  26. Hopf H (1931) Mathematische Annalen, vol 104. Springer, Berlin, pp 637–665

    Google Scholar 

  27. Seifert G (1950) Closed integral curves in 3-space and isotopie two-dimensional deformations. Proc Am Math Soc 1:287–302

    Google Scholar 

  28. Dandoloff R, Mosseri R (1987) Europhys Lett 3:1193

    Article  Google Scholar 

  29. Sadoc J-F, Charvolin J (2009) J Phys A Math Gen 42:465209

    Article  Google Scholar 

  30. Boerdijk AH (1952) Philips Res Rep 7:303

    Google Scholar 

  31. Coxeter HSM (1985) Can Math Bull 28:385

    Article  Google Scholar 

  32. Mosseri R, Sadoc J-F (1989) Z Phys D 12:89

    Article  Google Scholar 

  33. Sadoc J-F, Mosseri R (1984) J Phys 45:1025

    Article  CAS  Google Scholar 

  34. Mosseri R, Sadoc JF (1984) J Phys Lett 45:L827–L832

    Article  Google Scholar 

  35. Sadoc JF, Mosseri R (1985) J Phys 46:1809–1826

    Article  CAS  Google Scholar 

  36. Nicolis S, Mosseri R, Sadoc JF (1986) Europhys Lett 1:571

    Article  CAS  Google Scholar 

  37. Meiboom S, Sammon M, Berreman W (1983) Phys Rev A 28:3553

    Article  CAS  Google Scholar 

  38. Pansu B, Dubois-Violette E (1990) J Phys (Paris) 51:C7–C281

    Article  Google Scholar 

  39. Kléman M (1985) J Phys Lett 46:L-723

    Article  Google Scholar 

  40. Charvolin J, Sadoc JF (2008) Eur Phys J E 25:335

    Article  CAS  Google Scholar 

  41. Mosseri R, Gaspard JP (1987) J Non Cryst Solids 97–98:415–418

    Article  Google Scholar 

  42. Marsden J, Ratiu T (1994) Introduction to mechanics and symmetry. Springer, New York

    Book  Google Scholar 

  43. Mosseri R, Dandoloff R (2001) J Phys A Math Gen 34(47):10243–10252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Mosseri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosseri, R., Sadoc, JF. Hopf fibrations and frustrated matter. Struct Chem 23, 1071–1078 (2012). https://doi.org/10.1007/s11224-012-0010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0010-6

Keywords

Navigation