Skip to main content
Log in

Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT/BP86 calculations have been carried out on a series of hypothetical binuclear compounds of general formula (L3M)2(C12N2H8) (M = Sc–Ni, L3 = (CO)3, (PH3)3 and Cp, and C12N2H8 = phenazine ligand-denoted Phn). The various structures with syn and anti configurations have been investigated, in order to determine the phenazine’s coordination to first-row transition metals of various spin states with syn and anti conformations. The lowest energy structures depend on the nature of the metal, the spin state, and the molecular symmetry. This study has shown that the electronic communication between the metal centers depends on their oxidation state and the attached ligands. The tricarbonyl and the triphosphine ligands gave rise to comparable results in terms of stability order of isomers, metal-metal bond distances, and the coordination modes. Metal-metal multiple bonding has been evidenced for Sc, Ti, and V complexes to compensate the electronic deficiency. The Cr, Mn, Fe, Co, and Ni-rich metals prefer the anti conformation due to the enhancement of the metal valence electron count. The spin density values calculated for the triplet and quintet spin structures point out that the unpaired electrons are localized generally on the metal centers. The Wiberg bond indices are used to evaluate the metal-metal bonding. Furthermore, calculations using the BP86-D functional which take into account the attractive part of the van der Waals type interaction potential between atoms and molecules that are not directly connected to each other gave comparable results to those obtained by BP86 functional in terms of coordination modes, HOMO-LUMO gaps, metal-metal bond orders, and the stability order between isomers, but with slight deviation of M–C, M–N, and M–M bond distances not exceeding 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Fig. 9

Similar content being viewed by others

References

  1. Kallir AJ, Suter GW, Wild UP (1985). J Phys Chem 89:1996

    Article  CAS  Google Scholar 

  2. Aaron JJ, Maafi M, Parkanyi C, Boniface C (1995). Spectrochim Acta 51A:603

    Article  CAS  Google Scholar 

  3. Hirata Y, Tanaka I (1976). Chem Phys Lett 43:568

    Article  CAS  Google Scholar 

  4. Pavlopoulos TG (1987). Spectrochim Acta 43A:715

    Article  CAS  Google Scholar 

  5. Del Barrio JI, Rebato JR, Tablas FMG (1989). J Phys Chem 93:6836

    Article  Google Scholar 

  6. Kuzmin VA, Levin PP (1988). Bull Acad Sci USSR Div Chem Sci 37:1098

    Article  Google Scholar 

  7. Casey CP, Audett JD (1986). Chem Rev 86:339

    Article  CAS  Google Scholar 

  8. Schwab PFH, Levin MD, Michl J (1999). Chem Rev 99:1863

    Article  CAS  Google Scholar 

  9. Holton J, Lappert MF, Pearce R, Yarrow PI (1983). Chem Rev 83:135

    Article  CAS  Google Scholar 

  10. Moss JR, Scott LG (1984). Coord Chem Rev 60:171

    Article  CAS  Google Scholar 

  11. Chowdhury MDAH, Rahman MDS, Islam MDR, Rajbangshi S, Ghosh S, Hogarth G, Tocher DA, Yang L, Richmond MG, Kabir SE (2016). J Organomet Chem 805:34

    Article  CAS  Google Scholar 

  12. Shuster V, Gambarotta S, Nikiforov GB, Budzelaar P (2013). Organometallics 32:2329

    Article  CAS  Google Scholar 

  13. Zhu G, Tanski JM, Churchill DG, Janak KE, Parkin G (2002). J Am Chem Soc 124:13658

    Article  CAS  Google Scholar 

  14. Zhu G, Tanski JM, Parkin G (2003). Polyhedron 22:199

    Article  CAS  Google Scholar 

  15. Zhu G, Pang K, Parkin G (2008). J Am Chem Soc 130:1564

    Article  CAS  Google Scholar 

  16. Zhu G, Pang K, Parkin G (2008). Inorg Chim Acta 361:3221

    Article  CAS  Google Scholar 

  17. Zendaoui MS, Zouchoune B (2013). Polyhedron 51:123

    Article  CAS  Google Scholar 

  18. Merzoug M, Zouchoune B (2014). J Organometal Chem 770:69

    Article  CAS  Google Scholar 

  19. Zouchoune F, Zendaoui S-M, Bouchakri N, Djedouani A, Zouchoune B (2010). J Mol Struct 945:78

    Article  CAS  Google Scholar 

  20. Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009). Inorg Chim Acta 362:3541

    Article  CAS  Google Scholar 

  21. Bensalem N, Zouchoune B (2016). Struct Chem 27:1781

    Article  CAS  Google Scholar 

  22. Fadli S, Zouchoune B (2016). Struct Chem 28:985

    Article  Google Scholar 

  23. Zendaoui SM, Saillard JY, Zouchoune B (2016). Chem Select 5:940

    Google Scholar 

  24. Saiad A, Zouchoune B (2015). Can J Chem 93:1096

    Article  CAS  Google Scholar 

  25. Zendaoui MS, Zouchoune B (2016). New J Chem 40:2554

    Article  CAS  Google Scholar 

  26. Benhamada N, Bouchene R, Bouacida S, Zouchoune B (2015). Polyhedron 91:59

    Article  CAS  Google Scholar 

  27. Chekkal F, Zendaoui SM, Saillard JY, Zouchoune B (2013). New J Chem 37:2293

    Article  CAS  Google Scholar 

  28. Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  29. Kaplan IG (2006) Intermolecular interactions. Wiley, Chichester

    Book  Google Scholar 

  30. Grimme S (2006). J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  31. SCM ADF2014.01, theoretical chemistry. Vrije Universiteit, Amsterdam

  32. Baerends EJ, Ellis DE, Ros P (1973). Chem Phys 2:41

    Article  CAS  Google Scholar 

  33. te Velde G, Baerends EJ (1992). J Comput Phys 99:84

    Article  Google Scholar 

  34. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998). Theo Chim Acc 99:391

    Google Scholar 

  35. Bickelhaupt FM, Baerends EJ (2000). Rev Comput Chem 15:1

    CAS  Google Scholar 

  36. te Velde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001). J Comput Chem 22:931

    Article  Google Scholar 

  37. Vosko SD, Wilk L, Nusair M (1990). Can J Chem 58:1200

    Google Scholar 

  38. Becke AD (1986). J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  39. Becke AD (1988). Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  40. Perdew JP (1986). Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  41. Perdew JP (1986). Phys Rev B 34:7406

    Article  CAS  Google Scholar 

  42. Versluis L, Ziegler T (1988). J Chem Phys 88:322

    Article  CAS  Google Scholar 

  43. Fan L, Ziegler T (1992). J Chem Phys 96:9005

    Article  CAS  Google Scholar 

  44. Fan L, Ziegler T (1992). J Phys Chem 96:6937

    Article  CAS  Google Scholar 

  45. P. Flükiger, H. P. Lüthi, S. Portmann, J. Weber, MOLEKEL, Version 4.3.win32 Swiss Center for Scientific Computing (CSCS), Switzerland, 2000–2001. http://www.cscs.ch/molekel/

  46. Wiberg KB (1968). Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  47. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0.; Theoretical chemistry institute. University of Wisconsin, Madison Available at: www.chem.wisc.edu/_nbo6. Accessed 1 Feb 2013

    Google Scholar 

  49. Sattler A, Zhu G, Parkin G (2008). J Am Chem Soc 131:3221

    Google Scholar 

  50. Wang H, Sun Z, Xie Y, King RB, Schaefer HF III (2010) Eur J Inorg Chem: 5161

  51. Sun Z, Wang H, Xie Y, King RB, Schaefer III HF (2010). Dalton Trans 39:10702

    Article  CAS  Google Scholar 

  52. Wang H, Sun Z, Xie Y, King RB, Schaefer III HF (2010). Organometallics 29:630

    Article  Google Scholar 

  53. Korichi H, Zouchoune F, Zendaoui SM, Zouchoune B, Saillard JY (2010). Organometallics 29:1693

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for the Financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Zouchoune.

Electronic supplementary material

ESM 1

Selected geometrical and energetic parameters calculated for [(PH3)3M]2(Phz) (M = Sc, Ti, V, Cr, Mn, Fe, and Co) models obtained by BP86 method of singlet (S = 0) and triplet (S = 1) spin states and various symmetries (Tables S1–S3) and optimized-BP86 [(PH3)3M]2(Phz) (M = Sc, Ti, V, Cr, Mn, Fe, and Co) structures of of singlet (S = 0) and triplet (S = 1) spin states for syn and anti conformations (Figs. S1–S3) (DOCX 1698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naili, N., Zouchoune, B. Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29, 725–739 (2018). https://doi.org/10.1007/s11224-017-1064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1064-2

Keywords

Navigation