Skip to main content
Log in

Combining crystallographic and quantum chemical data to understand DNA-protein π-interactions in nature

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Noncovalent interactions are accepted to be prevalent across biochemical systems, including governing interactions between nucleic acids and proteins. The present review summarizes work done to characterize the abundance, structure and strength of DNA–protein π interactions by combining rigorous searches of experimental X-ray crystal structures of DNA–protein complexes and quantum chemical calculations. Focus is placed on interactions that occur between the π-containing amino acids (W, H, F, Y, R, E, and D) and the canonical DNA nucleobases (A, T, G, and C) or 2′-deoxyribose moiety. These studies highlight the considerable frequency of both DNA–protein π–π and sugar–π interactions in nature, which can involve any π-containing amino acid arranged in many unique binding orientations with respect to any DNA component. When combined with the significant strength predicted for the identified DNA–protein π contacts using density functional theory, these works underscore the potential impact of these interactions on critical biological functions. This conclusion is supported by a review of examples from the recent literature that have acknowledged the role of DNA–protein π interactions in binding, specificity, and catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang H, Wang W, Jin WJ (2016) σ-hole bond vs π-hole bond: A comparison based on halogen bond. Chem Rev 116(9):5072–5104. doi:10.1021/acs.chemrev.5b00527

  2. Kolář MH, Hobza P (2016) Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev 116(9):5155–5187. doi:10.1021/acs.chemrev.5b00560

  3. Lu Y, Liu Y, Li H, Zhu X, Liu H, Zhu W (2012) Energetic effects between halogen bonds and anion-π or lone pair-π interactions: A theoretical study. J Phys Chem A 116(10):2591–2597. doi:10.1021/jp212522k

  4. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100(11):4145–4186. doi:10.1021/cr990051i

    Article  CAS  Google Scholar 

  5. Rodgers MT, Armentrout PB (2016) Cationic noncovalent interactions: Energetics and periodic trends. Chem Rev 116(9):5642–5687. doi:10.1021/acs.chemrev.5b00688

  6. Mahadevi AS, Sastry GN (2012) Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem Rev 113(3):2100–2138. doi:10.1021/cr300222d

  7. Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97(5):1303–1324. doi:10.1021/cr9603744

  8. Reddy AS, Sastry GM, Sastry GN (2007) Cation–aromatic database. Proteins: Structure, Function, and Bioinformatics 67(4):1179–1184. doi:10.1002/prot.21202

    Article  CAS  Google Scholar 

  9. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion-π interactions into perspective. Angew Chem Int Ed 50(41):9564–9583. doi:10.1002/anie.201100208

  10. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825. doi:10.1021/cr500344e

    Article  CAS  Google Scholar 

  11. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519. doi:10.1021/acs.chemrev.5b00620

  12. Voet D, Voet JG (2011) Biochemistry, 4th edn. Wiley, Hoboken

  13. Riley KE, Hobza P (2013) On the importance and origin of aromatic interactions in chemistry and biodisciplines. Acc Chem Res 46(4):927–936. doi:10.1021/ar300083h

  14. Wang W, Wu EY, Hellinga HW, Beese LS (2012) Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides. J Biol Chem 287(34):28215–28226. doi:10.1074/jbc.M112.366609

  15. Joyce CM (1997) Choosing the right sugar: how polymerases select a nucleotide substrate. Proc Natl Acad Sci U S A 94:1619–1622

  16. Brown JA, Suo Z (2011) Unlocking the sugar “steric gate” of DNA polymerases. Biochemistry 50(7):1135–1142. doi:10.1021/bi101915z

    Article  CAS  Google Scholar 

  17. Lingaraju GM, Davis CA, Setser JW, Samson LD, Drennan CL (2011) Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-Ethenocytosine-containing DNA. J Biol Chem 286(15):13205–13213. doi:10.1074/jbc.M110.192435

  18. Lau AY, Schärer OD, Samson L, Verdine GL, Ellenberger T (1998) Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA. Cell 95(2):249–258. doi:10.1016/S0092-8674(00)81755-9

  19. Lau AY, Wyatt MD, Glassner BJ, Samson LD, Ellenberger T (2000) Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A 97(25):13573–13578. doi:10.1073/pnas.97.25.13573

  20. Rutledge LR, Wetmore SD (2011) Modeling the chemical step utilized by human alkyladenine DNA glycosylase: A concerted mechanism aids in selectively excising damaged purines. J Am Chem Soc 133(40):16258–16269. doi:10.1021/ja207181c

  21. Lenz SAP, Wetmore SD (2016) Evaluating the substrate selectivity of alkyladenine DNA glycosylase: The synergistic interplay of active site flexibility and water reorganization. Biochemistry 55(5):798–808. doi:10.1021/acs.biochem.5b01179

  22. Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF (2015) The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 527(7577):254–258. doi:10.1038/nature15728

  23. Parsons ZD, Bland JM, Mullins EA, Eichman BF (2016) A catalytic role for C–H/π interactions in base excision repair by Bacillus cereus DNA glycosylase AlkD. J Am Chem Soc 138(36):11485–11488. doi:10.1021/jacs.6b07399

  24. Wilson KA, Kellie JL, Wetmore SD (2014) DNA–protein π-interactions in nature: Abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 42(10):6726–6741. doi:10.1093/nar/gku269

  25. Wilson KA, Wells RA, Abendong MN, Anderson CB, Kung RW, Wetmore SD (2016) Landscape of π–π and sugar–π contacts in DNA–protein interactions. J Biomol Struct Dyn 34(1):184–200. doi:10.1080/07391102.2015.1013157

    Article  CAS  Google Scholar 

  26. Wilson KA, Kellie JL, Wetmore SD (2014) DNA–protein π-interactions in nature: Abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 42(10):6726–6741. doi:10.1093/nar/gku269

  27. Matthews BW (1988) No code for recognition. Nature 335(6188):294–295. doi:10.1038/335294a0

  28. Pabo CO, Sauer RT (1992) Transcription factors: Structural families and principles of DNA recognition. Annu Rev Biochem 61(1):1053–1095. doi:10.1146/annurev.bi.61.070192.005201

  29. Suzuki M (1994) A framework for the DNA–protein recognition code of the probe helix in transcription factors: The chemical and stereochemical rules. Structure 2(4):317–326. doi:10.1016/S0969-2126(00)00033-2

  30. Mandel-Gutfreund Y, Schueler O, Margalit H (1995) Comprehensive analysis of hydrogen bonds in regulatory protein DNA–complexes: In search of common principles. J Mol Biol 253(2):370–382. doi:10.1006/jmbi.1995.0559

  31. Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid–base interactions: A three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res 29(13):2860–2874. doi:10.1093/nar/29.13.2860

  32. Luscombe NM, Thornton JM (2002) Protein–DNA interactions: Amino acid conservation and the effects of mutations on binding specificity. J Mol Biol 320(5):991–1009. doi:10.1016/S0022-2836(02)00571-5

  33. Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R (2005) Protein–nucleic acid recognition: Statistical analysis of atomic interactions and influence of DNA structure. Proteins: Structure, Function, and Bioinformatics 61(2):258–271. doi:10.1002/prot.20607

  34. Sathyapriya R, Vijayabaskar M, Vishveshwara S (2008) Insights into protein–DNA interactions through structure network analysis. PLoS Comput Biol 4(9):e1000170. doi:10.1371/journal.pcbi.1000170

  35. Mao L, Wang Y, Liu Y, Hu X (2004) Molecular determinants for ATP-binding in proteins: A data mining and quantum chemical analysis. J Mol Biol 336(3):787–807. doi:10.1016/j.jmb.2003.12.056

  36. Baker CM, Grant GH (2007) Role of aromatic amino acids in protein–nucleic acid recognition. Biopolymers 85(5–6):456–470. doi:10.1002/bip.20682

    Article  CAS  Google Scholar 

  37. Kirsanov DD, Zanegina ON, Aksianov EA, Spirin SA, Karyagina AS, Alexeevski AV (2013) NPIDB: Nucleic acid–protein interaction database. Nucleic Acids Res 41:D517–D523. doi:10.1093/nar/gks1199

  38. Norambuena T, Melo F (2010) The protein–DNA interface database. BMC Bioinformatics 11(1):262. doi:10.1186/1471-2105-11-262

  39. Kumar MDS, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, Sarai A (2006) ProTherm and ProNIT: Thermodynamic databases for proteins and protein–nucleic acid interactions. Nucleic Acids Res 34:D204–D206. doi:10.1093/nar/gkj103

  40. Contreras-Moreira B (2010) 3D-footprint: A database for the structural analysis of protein–DNA complexes. Nucleic Acids Res 38:D91–D97. doi:10.1093/nar/gkp781

  41. Lewis BA, Walia RR, Terribilini M, Ferguson J, Zheng C, Honavar V, Dobbs D (2011) PRIDB: A protein–RNA interface database. Nucleic Acids Res 39:D277–D282. doi:10.1093/nar/gkq1108

  42. Kim R, Guo JT (2009) PDA: An automatic and comprehensive analysis program for protein–DNA complex structures. BMC Genomics 10:S13. doi:10.1186/1471-2164-10-S1-S13

  43. Lee S, Blundell TL (2009) BIPA: A database for protein–nucleic acid interaction in 3D structures. Bioinformatics 25(12):1559–1560. doi:10.1093/bioinformatics/btp243

  44. Cauet E, Rooman M, Wintjens R, Lievin J, Biot C (2005) Histidine-aromatic interactions in proteins and protein-ligand complexes: Quantum chemical study of X-ray and model structures. J Chem Theory Comput 1(3):472–483. doi:10.1021/ct049875k

  45. Copeland KL, Anderson JA, Farley AR, Cox JR, Tschumper GS (2008) Probing phenylalanine/adenine π-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations. J Phys Chem B 112(45):14291–14295. doi:10.1021/jp805528v

  46. Copeland KL, Pellock SJ, Cox JR, Cafiero ML, Tschumper GS (2013) Examination of tyrosine/adenine stacking interactions in protein complexes. J Phys Chem B 117(45):14001–14008. doi:10.1021/jp408027j

  47. Rooman M, Lievin J, Buisine E, Wintjens R (2002) Cation-π/H-bond stair motifs at protein-DNA interfaces. J Mol Biol 319(1):67–76. doi:10.1016/S0022-2836(02)00263-2

  48. Biot C, Wintjens R, Rooman M (2004) Stair motifs at protein–DNA interfaces: Nonadditivity of H-bond, stacking, and cation-π interactions. J Am Chem Soc 126(20):6220–6221. doi:10.1021/ja049620g

  49. Wintjens R, Biot C, Rooman M, Lievin J (2003) Basis set and electron correlation effects on ab initio calculations of cation-π/H-bond stair motifs. J Phys Chem A 107(32):6249–6258. doi:10.1021/jp034103q

  50. Wintjens R, Lievin J, Rooman M, Buisine E (2000) Contribution of cation-π interactions to the stability of protein–DNA complexes. J Mol Biol 302(2):395–410. doi:10.1006/jmbi.2000.4040

  51. Gromiha MM, Santhosh C, Ahmad S (2004) Structural analysis of cation-π interactions in DNA binding proteins. Int J Biol Macromol 34(3):203–211. doi:10.1016/j.ijbiomac.2004.04.003

  52. Gromiha MM, Santhosh C, Suwa M (2004) Influence of cation-π interactions in protein–DNA complexes. Polymer 45(2):633–639. doi:10.1016/j.polymer.2003.10.069

  53. Biot C, Buisine E, Kwasigroch JM, Wintjens R, Rooman M (2002) Probing the energetic and structural role of amino acid/nucleobase cation-π interactions in protein-ligand complexes. J Biol Chem 277(43):40816–40822. doi:10.1074/jbc.M205719200

  54. Biot C, Buisine E, Rooman M (2003) Free-energy calculations of protein-ligand cation-π and amino-π interactions: From vacuum to proteinlike environments. J Am Chem Soc 125(46):13988–13994.  doi:10.1021/ja035223e

  55. Auffinger P, Bielecki L, Westhof E (2004) Anion binding to nucleic acids. Structure 12(3):379–388. doi:10.1016/j.str.2004.02.015

  56. Corona RI, Guo JT (2016) Statistical analysis of structural determinants for protein–DNA-binding specificity. Proteins: Structure, Function, and Bioinformatics 84(8):1147–1161. doi:10.1002/prot.25061

  57. Schwans JP, Sunden F, Lassila JK, Gonzalez A, Tsai Y, Herschlag D (2013) Use of anion–aromatic interactions to position the general base in the ketosteroid isomerase active site. Proc Natl Acad Sci U S A 110(28):11308–11313. doi:10.1073/pnas.1206710110

    Article  CAS  Google Scholar 

  58. Spiwok V, Lipovová P, Skálová T, Buchtelová E, Hašek J, Králová B (2004) Role of CH/π interactions in substrate binding by Escherichia coli β-galactosidase. Carbohydr Res 339(13):2275–2280. doi:10.1016/j.carres.2004.06.016

  59. Spiwok V, Lipovová P, Skálová T, Vondráčková E, Dohnálek J, Hašek J, Králová B (2006) Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance. J Comput Aided Mol Des 19(12):887–901. doi:10.1007/s10822-005-9033-z

  60. Sujatha MS, Sasidhar YU, Balaji PV (2004) Energetics of galactose– and glucose–aromatic amino acid interactions: Implications for binding in galactose-specific proteins. Protein Sci 13(9):2502–2514. doi:10.1110/ps.04812804

  61. Wimmerová M, Kozmon S, Nečasová I, Mishra SK, Komárek J, Koča J (2012) Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods. PLoS One 7(10):e46032. doi:10.1371/journal.pone.0046032

  62. Singh NJ, Min SK, Kim DY, Kim KS (2009) Comprehensive energy analysis for various types of π-interaction. J Chem Theory Comput 5(3):515–529. doi:10.1021/ct800471b

    Article  CAS  Google Scholar 

  63. Cerny J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 9(39):5291–5303. doi:10.1039/B704781A

    Article  CAS  Google Scholar 

  64. Zacharias N, Dougherty DA (2002) Cation–π interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23:281–287. doi:10.1016/S0165-6147(02)02027-8

  65. Dougherty DA (2012) The cation-π interaction. Acc Chem Res 46(4):885–893. doi:10.1021/ar300265y

  66. Churchill CDM, Navarro-Whyte L, Rutledge LR, Wetmore SD (2009) Effects of the biological backbone on DNA–protein stacking interactions. Phys Chem Chem Phys 11(45):10657–10670. doi:10.1039/b910747a

  67. Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) MP2 study of cooperative effects between cation-π, anion-π and π-π interactions. New J Chem 31(4):556–560. doi:10.1039/B612848C

    Article  CAS  Google Scholar 

  68. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37(1):68–83. doi:10.1039/b614208g

    Article  CAS  Google Scholar 

  69. Wolfe AE, O’Brien PJ (2009) Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase. Biochemistry 48(48):11357–11369. doi:10.1021/bi9015082

  70. O’Brien PJ, Ellenberger T (2003) Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines. Biochemistry 42(42):12418–12429. doi:10.1021/bi035177v

  71. O’Brien PJ, Ellenberger T (2004) Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J Biol Chem 279(11):9750–9757. doi:10.1074/jbc.M312232200

  72. Carrière L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H, Jounier S, Aude J-C, Keime C, Murvai J (2012) Genomic binding of pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res 40(1):270–283. doi:10.1093/nar/gkr737

  73. Faresse NJ, Canella D, Praz V, Michaud J, Romascano D, Hernandez N (2012) Genomic study of RNA polymerase II and III SNAP c-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet 8(11):e1003028. doi:10.1371/journal.pgen.1003028

  74. Gouge J, Satia K, Guthertz N, Widya M, Thompson AJ, Cousin P, Dergai O, Hernandez N, Vannini A (2015) Redox signaling by the RNA polymerase III TFIIB-related factor Brf2. Cell 163(6):1375–1387. doi:10.1016/j.cell.2015.11.005

  75. Birdsey GM, Dryden NH, Shah AV, Hannah R, Hall MD, Haskard DO, Parsons M, Mason JC, Zvelebil M, Gottgens B (2012) The transcription factor ERG regulates expression of histone deacetylase 6 and multiple pathways involved in endothelial cell migration and angiogenesis. Blood 119(3):894–903. doi:10.1182/blood-2011-04-350025

  76. Birdsey GM, Shah AV, Dufton N, Reynolds LE, Almagro LO, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana E (2015) The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev Cell 32(1):82–96. doi:10.1016/j.devcel.2014.11.016

  77. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M, Bonke M, Jolma A, Varjosalo M, Gehrke AR (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29(13):2147–2160. doi:10.1038/emboj.2010.106

  78. Cooper CD, Newman JA, Aitkenhead H, Allerston CK, Gileadi O (2015) Structures of the ETS protein DNA-binding domains of transcription factors ETV1, ETV4, ETV5, and FEV determinants of DNA binding and redox regulation by disulfide bond formation. J Biol Chem 290(22):13692–13709. doi:10.1074/jbc.M115.646737

  79. Cooper CD, Newman JA, Gileadi O (2014) Recent advances in the structural molecular biology of Ets transcription factors: Interactions, interfaces and inhibition. Biochem Soc Trans 42(1):130–138. doi:10.1042/BST20130227

  80. Regan MC, Horanyi PS, Pryor EE, Sarver JL, Cafiso DS, Bushweller JH (2013) Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited. Proc Natl Acad Sci U S A 110(33):13374–13379. doi:10.1073/pnas.1301726110

  81. Beuerle MG, Dufton NP, Randi AM, Gould IR (2016) Molecular dynamics studies on the DNA-binding process of ERG. Mol BioSyst 12(12):3600–3610. doi:10.1039/c6mb00506c

  82. Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471. doi:10.1146/annurev.biochem.79.081507.103945

  83. Li Z, Deutscher MP (2002) RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8(1):97–109.

  84. Hsiao Y-Y, Fang W-H, Lee C-C, Chen Y-P, Yuan HS (2014) Structural insights into DNA repair by RNase T: An exonuclease processing 3′ end of structured DNA in repair pathways. PLoS Biol 12(3):e1001803. doi:10.1371/journal.pbio.1001803

  85. Hsiao Y-Y, Yang C-C, Lin CL, Lin JL, Duh Y, Yuan HS (2011) Structural basis for RNA trimming by RNase T in stable RNA 3′-end maturation. Nat Chem Biol 7(4):236–243. doi:10.1038/nchembio.524

  86. Hsiao Y-Y, Duh Y, Chen Y-P, Wang Y-T, Yuan HS (2012) How an exonuclease decides where to stop in trimming of nucleic acids: Crystal structures of RNase T–product complexes. Nucleic Acids Res 40(16):8144–8154. doi:10.1093/nar/gks548

  87. Duh Y, Hsiao YY, Li CL, Huang JC, Yuan HS (2015) Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids. Protein Sci 24(12):1934–1941. doi:10.1002/pro.2800

  88. Fernandez-Leiro R, Conrad J, Yang J-C, Freund SMV, Scheres SHW, Lamers MH (2017) Self-correcting mismatches during high-fidelity DNA replication. Nat Struct Mol Biol 24(2):140–143. doi:10.1038/nsmb.3348

    Article  CAS  Google Scholar 

  89. Boshoff HIM, Reed MB, Barry Iii CE, Mizrahi V (2003) DNAE2 polymerase contributes to in vivo survival and the emergence of drug resistance in mycobacterium tuberculosis. Cell 113(2):183–193. doi:10.1016/S0092-8674(03)00270-8

    Article  CAS  Google Scholar 

  90. Desai NA, Shankar V (2003) Single-strand-specific nucleases. FEMS Microbiol Rev 26(5):457–491. doi:10.1111/j.1574-6976.2003.tb00626.x

  91. Kovaľ T, Østergaard LH, Lehmbeck J, Nørgaard A, Lipovová P, Dušková J, Skálová T, Trundová M, Kolenko P, Fejfarová K, Stránský J, Švecová L, Hašek J, Dohnálek J (2016) Structural and catalytic properties of S1 nuclease from Aspergillus oryzae responsible for substrate recognition, cleavage, non–specificity, and inhibition. PLoS One 11(12):e0168832. doi:10.1371/journal.pone.0168832

  92. Parnes J, Pan C (2000) CD72, a negative regulator of B-cell responsiveness. Immunol Rev 176(1):75–85. DOI:10.1034/j.1600-065X.2000.00608.x

  93. Akatsu C, Shinagawa K, Numoto N, Liu Z, Ucar AK, Aslam M, Phoon S, Adachi T, Furukawa K, Ito N (2016) CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand SM/RNP. J Exp Med 213(12):2691–2706. doi:10.1084/jem.20160560

  94. Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metab 7(7):715–727. doi:10.2174/138920006778520606

  95. Patterson S, Wyllie S (2014) Nitro drugs for the treatment of trypanosomatid diseases: Past, present, and future prospects. Trends Parasitol 30(6):289–298. doi:10.1016/j.pt.2014.04.003

  96. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13(8):673–692. doi:10.1021/tx000002x

  97. Murelli RP, Zhang AX, Michel J, Jorgensen WL, Spiegel DA (2009) Chemical control over immune recognition: A class of antibody-recruiting small molecules that target prostate cancer. J Am Chem Soc 131(47):17090–17092. doi:10.1021/ja906844e

  98. An Y, Bloom JW, Wheeler SE (2015) Quantifying the π-stacking interactions in nitroarene binding sites of proteins. J Phys Chem B 119(45):14441–14450. doi:10.1021/acs.jpcb.5b08126

  99. Kichler A, Leborgne C, März J, Danos O, Bechinger B (2003) Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc Natl Acad Sci U S A 100(4):1564–1568. doi:10.1073/pnas.0337677100

  100. Kichler A, Mason AJ, Bechinger B (2006) Cationic amphipathic histidine-rich peptides for gene delivery. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(3):301–307. doi:10.1016/j.bbamem.2006.02.005

  101. Leng Q, Mixson AJ (2005) Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection. Nucleic Acids Res 33(4):e40–e40. doi:10.1093/nar/gni040

  102. Mason AJ, Leborgne C, Moulay G, Martinez A, Danos O, Bechinger B, Kichler A (2007) Optimising histidine rich peptides for efficient DNA delivery in the presence of serum. J Control Release 118(1):95–104. doi:10.1016/j.jconrel.2006.12.004

  103. Bélières M, Déjugnat C, Chouini-Lalanne N (2015) Histidine-based lipopeptides enhance cleavage of nucleic acids: interactions with DNA and hydrolytic properties. Bioconjug Chem 26(12):2520–2529. doi:10.1021/acs.bioconjchem.5b00542

  104. Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A (2004) Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119(2):181–193. doi:10.1016/j.cell.2004.09.034

  105. Harrison MM, Ceol CJ, Lu X, Horvitz HR (2006) Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci U S A 103(45):16782–16787. doi:10.1073/pnas.0608461103

  106. Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ, Botchan MR (2004) Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev 18(23):2929–2940. doi:10.1101/gad.1255204

  107. Schmit F, Cremer S, Gaubatz S (2009) LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc 2 promoter in a sequence-specific manner. FEBS J 276(19):5703–5716. doi:10.1111/j.1742-4658.2009.07261.x

  108. Müller GA, Wintsche A, Stangner K, Prohaska SJ, Stadler PF, Engeland K (2014) The CHR site: Definition and genome-wide identification of a cell cycle transcriptional element. Nucleic Acids Res 42(16):10331–10350. doi:10.1093/nar/gku696

  109. Marceau AH, Felthousen JG, Goetsch PD, Iness AN, Lee H-W, Tripathi SM, Strome S, Litovchick L, Rubin SM (2016) Structural basis for LIN54 recognition of CHR elements in cell cycle-regulated promoters. Nat Commun 7:12301. doi:10.1038/ncomms12301

Download references

Acknowledgements

S.D.W thanks the Natural Sciences and Engineering Research Council of Canada (NSERC; 249598-07), Canada Research Chairs Program (950-228175), and Canada Foundation of Innovation (22770). K.A.W thanks NSERC (Vanier), Alberta Innovates - Technology Futures, and the University of Lethbridge for student scholarships. Computational resources from the New Upscale Cluster for Lethbridge to Enable Innovative Chemistry (NUCLEIC), as well as those provided by Westgrid and Compute/Calcul Canada, are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey D. Wetmore.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

This paper is dedicated to Prof. Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, K.A., Wetmore, S.D. Combining crystallographic and quantum chemical data to understand DNA-protein π-interactions in nature. Struct Chem 28, 1487–1500 (2017). https://doi.org/10.1007/s11224-017-0954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0954-7

Keywords

Navigation