Skip to main content
Log in

Theoretical characterization of the chemical bonds of some three-membered ring compounds through QTAIM theory

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nature of the carbonyl and the intraring C–C, C–N, C–O, N–N, O–O and N–O bonds of cyclopropanone and the following cyclopropanone derivatives: aziridine-2-one (1); oxirane-2-one (2); 1,2-diaziridine-3-one (3); 1,2-dioxirane-3-one (4); 1,2-oxaziridine-3-one (5); cyclopropane-1,2-dione (6); aziridine-2,3-dione (7); and oxirane-2,3-dione (8). The intramolecular distribution of the electronic charge density and the L(r) = −¼∇2 ρ(r) function have been investigated within the framework of the quantum theory of atoms in molecule theory. This methodology allowed us to characterize the bonds of cyclopropanone and the cyclopropanone derivatives studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turro NJ (1969) Cyclopropanones. Acc Chem Res 2:25–32

    Article  CAS  Google Scholar 

  2. Wasserman HH, Clark GM, Turley PC (1974) Recent aspects of cyclopropanone chemistry. Top Curr Chem Forts Chem Forsch 47:73–156

    Article  CAS  Google Scholar 

  3. Zwanenburg B, ten Holte P (2001) The synthetic potential of three-membered ring aza-heterocycles. Top Curr Chem 216:93–124

    Article  CAS  Google Scholar 

  4. Dermer OC, Ham GE (1969) Ethylenimine and other aziridines: chemistry and applications. Academic Press, New York

    Google Scholar 

  5. Hoffman RV (2000) Stereospecificity in the α-lactam (aziridinone) synthon. In: Greenberg A, Breneman CM, Liebman JF (eds) The amide linkage: structural significance in chemistry, biochemistry and materials science. Amide linkage. Wiley, New York

    Google Scholar 

  6. Deyrup JA (1983) Aziridines. In: Hassner A (ed) Small-ring heterocycles—part 1. Wiley, New York

    Google Scholar 

  7. Niwayama S, Noguchi H, Ohno M, Kobayashi S (1992) On the mechanism of the Meinwald + rearrangement of electron deficient systems. Tetrahedron Lett 34:665–668

    Article  Google Scholar 

  8. Schmittel M, von Seggern H (1995) Aminium salt-initiated oxygenation of ketenes—formation of succinic anhydrides. Liebigs Ann Chem 10:1815–1821

    Article  Google Scholar 

  9. Strijtveen B, Kellogg RM (1987) Evidence for α-lactone formation in the thioacetylation of some α-hydroxy acids with the aid of Mitsunobu-type reagent. Recl Trav Chim Pays-Bas 106:539–542

    Article  CAS  Google Scholar 

  10. Adam W, Blancafort L (1996) Steric and stereoelectronic control of the mode selectivity as a function of alkene structure in the reaction with dimethyl α-peroxylactone: cycloadducts and eneproducts versus epoxides. J Am Chem Soc 118:4778–4787

    Article  CAS  Google Scholar 

  11. Liebman JF, Greenberg A (1974) Estimation by bond-additivity schemes of the relative thermodynamic stabilities of three-membered-ring systems and their open dipolar forms. J Org Chem 39:123–130

    Article  Google Scholar 

  12. Chung CSC (1976) α-Lactones: a semi-empirical SCFMO study. J Mol Struct 30:189–191

    Article  CAS  Google Scholar 

  13. Antolovic D, Shiner VJ, Davidson ER (1988) Theoretical study of α-lactone, acetoxyl diradical, and the gas-phase dissociation of the chloroacetate anion. J Am Chem Soc 110:1375–1381

    Article  CAS  Google Scholar 

  14. Graul ST, Squires RR (1990) Collisional activation of intramolecular nucleophilic displacement reactions: the formation of acetolactone from dissociation of α-haloacetate negative ions. Int J Mass Spectrom Ion Process 100:785–802

    Article  CAS  Google Scholar 

  15. Wenthold PG, Squires RR (1994) Gas-phase properties and reactivity of the acetate radical anion. Determination of the C–H bond strengths in acetic acid and acetate ion. J Am Chem Soc 116:11890–11897

    Article  CAS  Google Scholar 

  16. L’abbé G (1980) Heterocyclic analogues of methylene cyclopropanes. Angew Chem Int Ed Engl 19:276–289

    Article  Google Scholar 

  17. Johnson WTG, Borden WT (1997) Why are methylenecyclopropane and 1-methylcylopropene more “strained” than methylcyclopropane? J Am Chem Soc 119:5930–5933

    Article  CAS  Google Scholar 

  18. Bach RD, Dmitrenko O (2006) The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. J Am Chem Soc 128:4598–4611

    Article  CAS  Google Scholar 

  19. Wiberg KB, Fenoglio RA (1968) Heats of formation of C4H6 hydrocarbons. J Am Chem Soc 90:3395–3397

    Article  CAS  Google Scholar 

  20. Rodriquez CF, Williams IH (1997) Ring strain energy and enthalpy of formation of oxiranone: an ab initio theoretical determination. J Chem Soc Perkin Trans 2(5):953–958

    Article  Google Scholar 

  21. Liebman JF, Greenberg A (1976) A survey of strained organic molecules. Chem Rev 76:311–365

    Article  CAS  Google Scholar 

  22. Ruggiero GD, Williams IH (2001) Oxiranones: α-lactones or zwitterions? Insights from calculated electron density distribution analysis. J Chem Soc Perkin Trans 2(5):733–737

    Article  Google Scholar 

  23. Grant Buchanan J, Charlton MH, Mahon MF, Robinson JJ, Ruggiero GD, Williams IH (2002) Experimental and computational studies of α-lactones: structure and bonding in the three-membered ring. J Phys Org Chem 15:642–646

    Article  Google Scholar 

  24. Ho M, Szarek WA, Smith VH (2001) Theoretical studies of unusually short bond lengths in oxirane and derivatives. J Mol Struct (Theochem) 537:253–264

    Article  CAS  Google Scholar 

  25. Miranda MS, Ferreira PJO, Esteves da Silva JCG, Liebman JF (2015) Three-membered ring amides: a calculational and conceptual study of the structure and energetics of 1,2-oxaziridine-3-one and aziridine-2,3-dione. Can J Chem 93:406–413

    Article  CAS  Google Scholar 

  26. Bauza A, Quinonero D, Deya PM, Frontera A (2012) Estimating ring strain energies in small carbocycles by means of the Bader’s theory of atoms-in-molecules. Chem Phys Lett 536:165–169

    Article  CAS  Google Scholar 

  27. Møller C, Plesset MC (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  29. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford, Great Britain

    Google Scholar 

  30. Popelier P (ed) (2000) Atoms in molecules: an introduction. Prentice-Hall, Harlow, Great Britain

    Google Scholar 

  31. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  32. AIMAll (Version 11.12.19), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2011 (aim.tkgristmill.com)

  33. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  34. Cremer D, Kraka E, Slee TS, Bader RFW, Lau CDH, Nguyen-Dang TT, Mac Dougall PJ (1983) Description of homoaromaticity in terms of electron distributions. J Am Chem Soc 105:5069–5075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D. J. R. Duarte gratefully acknowledges the Secretaría de Ciencia y Tecnología de la Universidad Nacional del Nordeste (SECYT UNNE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darío J. R. Duarte, Margarida S. Miranda or Joel F. Liebman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, D.J.R., Miranda, M.S., Esteves da Silva, J.C.G. et al. Theoretical characterization of the chemical bonds of some three-membered ring compounds through QTAIM theory. Struct Chem 27, 663–670 (2016). https://doi.org/10.1007/s11224-015-0606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0606-8

Keywords

Navigation