Skip to main content
Log in

Insights into the mechanism of binding of the gold(III) dithiocarbamate derivatives to cysteine or DNA purine bases

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Complexes Au(DMDT)Br2 (DMDT = N,N-dimethyldithiocarbamate), Au(ESDT)Br2 (ESDT = ethylsarcosinedithiocarbamate) and Au(ESDT)Cl2 are likely to be considered as important candidates for antitumor agents. In the reactions, there is H-bond reciprocity between attacking group and H2O so that it will enhance the stability of the whole structure. On the basis of the optimized gas-phase geometry, the data of monofunctional reactions indicate that the S site of cysteine is superior to other active sites, and by analyzing the order of the activation barriers of two gold compounds with different halogen ligand in the bromoaqua (chloroaqua) substitution reaction, we discover that different halogen ligand has a slight effect on substitution reaction in the aqueous solution. Meanwhile, the cysteine as a drug target is better than purine bases. Afterward, we performed geometry optimizations in two different environments (gas phase and aqueous solution). Follow on to the bifunctional substitution reactions based on the optimized gas-phase geometry, except for the reaction when diaqua adduct [Au(ESDT)Cys(S, N)(H2O)]2+ acts as reactant, all the energy barriers of cysteine’s S as attack site are the lowest in the aqueous solution. Nevertheless, on the basis of the optimized aqueous solution geometry, our computations show that cysteine’s O site is superior to other targets in the bifunctional substitution reaction, when monofunctional adduct [Au(ESDT)Cys(S, N)(H2O)]2+ acts as reactant in the aqueous solution. Therefore, this conclusion by our calculations obtained is found to be in line with some laboratory experimental results. Besides, in the whole substitution reactions, the environmental influences should not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cutillas N, Yellol GS, De Haro C, Vicente C, Rodríguez V, Ruiz J (2013) Coord Chem Rev 257:2784–2797

    Article  CAS  Google Scholar 

  2. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127

    Article  CAS  Google Scholar 

  3. Van Rijt SH, Sadler PJ (2009) Drug Discov Today 14:1089–1097

    Article  Google Scholar 

  4. Koch R (1890) Dtsch Med Wochenstr 16:756

    Google Scholar 

  5. Berners-Price SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Sung CM, Mong SM, Sadler PJ, Crooke ST (1986) Cancer Res 46:5486–5493

    CAS  Google Scholar 

  6. Berners-Price SJ, Girard GR, Hill DT, Sutton BM, Jarrett PS, Faucette LF, Johnson RK, Mirabelli CK, Sadler PJ (1990) J Med Chem 33:1386–1392

    Article  CAS  Google Scholar 

  7. Rackham O, Nichols SJ, Leedman PJ, Berners-Price SJ, Filipovska A (2007) Biochem Pharmacol 74:992–1002

    Article  CAS  Google Scholar 

  8. Tiekink ERT (2008) Inflammopharmacology 16:138–142

    Article  CAS  Google Scholar 

  9. Ott I (2009) Coord Chem Rev 253:1670–1681

    Article  CAS  Google Scholar 

  10. Bird HA (1990) Ann Rheum Dis 49:331–336

    Article  CAS  Google Scholar 

  11. Saccoccia F, Angelucci F, Boumis G, Brunori M, Miele AE, Williams DL, Bellelli A (2012) J Inorg Biochem 108:105–111

    Article  CAS  Google Scholar 

  12. McCubbin QJ, Stoddart FJ, Welton T, White AJP, Williams DJ (1998) Inorg Chem 37:3753–3758

    Article  CAS  Google Scholar 

  13. Fox OD, Drew MG, Beer PD (2000) Angew Chem Int Ed Engl 39:136–140

    Article  CAS  Google Scholar 

  14. Berry NG, Pratt MD, Fox OD, Beer PD (2001) Supramol Chem 13:677–682

    Article  CAS  Google Scholar 

  15. Beer PD, Berry N, Drew MGB, Fox OD, Padilla-Tosta ME, Patell S (2001) Chem Commun 2:199–200

    Article  Google Scholar 

  16. Beer PD, Berry NG, Cowley AR, Hayes EJ, Oates EC, Wong WW (2003) Chem Commun 19:2408–2409

    Article  Google Scholar 

  17. Zhao Y, Pérez-Segarra W, Shi Q, Wei A (2005) J Am Chem Soc 127:7328–7329

    Article  CAS  Google Scholar 

  18. Ronconi L, Giovagnini L, Marzano C, Bettìo F, Graziani R, Pilloni G, Fregona D (2005) Inorg Chem 44:1867–1881

    Article  CAS  Google Scholar 

  19. Cattaruzza L, Fregona D, Mongiat M, Ronconi L, Fassina A, Colombatti A, Aldinucci D (2011) Int J Cancer 128:206–215

    Article  CAS  Google Scholar 

  20. Casini A, Hartinger C, Gabbiani C, Mini E, Dyson PJ, Keppler BK, Messori L (2008) J Inorg Biochem 102:564–575

    Article  CAS  Google Scholar 

  21. Ronconi L, Marzano C, Zanello P, Corsini M, Miolo G, Maccà C, Trevisan A, Fregona D (2006) J Med Chem 49:1648–1657

    Article  CAS  Google Scholar 

  22. Aldinucci D, Lorenzon D, Stefani L, Giovagnini L, Colombatti A, Fregona D (2007) Anticancer Drugs 18:323–332

    Article  CAS  Google Scholar 

  23. Casini A, Kelter G, Gabbiani C, Cinellu MA, Minghetti G, Fregona D, Fiebig HH, Messori L (2009) J Biol Inorg Chem 14:1139–1149

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Revision C.01 ed. Gaussian, Inc., Wallingford

    Google Scholar 

  25. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  26. Mielich B, Savin A, Stoll H, Peuss H (1989) Chem Phys Lett 157:200–206

    Article  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  30. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  32. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  33. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct: Theochem 464:211–226

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  36. Zhao HL, Zhou LX (2012) Comput Theor Chem 979:22–32

    Article  CAS  Google Scholar 

  37. Liao JZ, Zhao HL, Zhou LX (2014) Comput Theor Chem 1048:84–94

    Article  CAS  Google Scholar 

  38. Saggioro D, Rigobello MP, Paloschi L, Folda A, Moggach SA, Parsons S, Ronconi L, Fregona D, Bindoli A (2007) Chem Biol 14:1128–1139

    Article  CAS  Google Scholar 

  39. Deepa P, Kolandaivel P, Senthilkumar K (2013) Struct Chem 24:583–595

    Article  CAS  Google Scholar 

  40. Li T, Gao Y, Li J, Zhou LX (2013) Struct Chem 24:2137–2148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21271088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Zhou, L. Insights into the mechanism of binding of the gold(III) dithiocarbamate derivatives to cysteine or DNA purine bases. Struct Chem 27, 651–662 (2016). https://doi.org/10.1007/s11224-015-0600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0600-1

Keywords

Navigation