Skip to main content
Log in

Theoretical investigation on the geometries and electronic properties of cesium–silicon CsSi n (n = 2–12) clusters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures, relative stabilities, and electronic properties of pure Si n and Cs-doped silicon clusters (n = 2–12) are systematically investigated using the density functional theory at the B3LYP level. The optimized structures indicated that the lowest-energy structures of CsSi n are similar to those of pure Si n clusters and prefer the 3-dimensional configuration for n = 3–12. The relative stabilities of CsSi n clusters are analyzed based on the averaged binding energy, fragmentation energy, second-order energy difference, and HOMO–LUMO energy gap. It is found that CsSi6 and CsSi9 are the magic clusters, and the doping of Cs atom reduces the chemical stabilities of Si n frame. The Mulliken population analysis pointed out that the charges in the corresponding CsSi n clusters always transfer from Cs atom to Si n host in the range of 0.80–0.91 electron. In addition, the partial density of states, infrared, and Raman spectra is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vogel M, Kasigkeit C, Hirsch K, Langenbeg A, Rittmann J, Zamudio-Bayer V, Kulesza A, Mitrić R, Möller T, Lssendorff BV, Lau JT (2012) Phys Rev B 85:195454/1–195454/7

    Article  CAS  Google Scholar 

  2. Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) J Am Chem Soc 132:15589–15602

    Article  CAS  Google Scholar 

  3. Ngan VT, Pierloot K, Nguyen MT (2013) Phys Chem Chem Phys 15:5493–5498

    Article  CAS  Google Scholar 

  4. Han JG, Xiao CY, Hagelberg F (2002) Struct Chem 13:173–191

    Article  CAS  Google Scholar 

  5. Hagelberg F, Xiao C (2003) Struct Chem 14:487–496

    Article  CAS  Google Scholar 

  6. Glander GS, Webb MB (1989) Surf Sci 222:64–83

    Article  CAS  Google Scholar 

  7. Souda R, Hayami W, Aizawa T, Otani S, Ishizawa Y (1992) Phys Rev Lett 46:7315/1–7315/8

    Google Scholar 

  8. Namiki A, Suzuki S, Kato H, Babasaki Y, Tanaka M, Nakamura T, Suzaki T (1992) J Chem Phys 97:3781–3793

    Article  CAS  Google Scholar 

  9. Kaya K, Sugioka T, Taguwa T, Hoshino K, Nakajima A (1993) Z Phys D 26:201–203

    Article  CAS  Google Scholar 

  10. Kishi R, Kawamata H, Negishi Y, Iwata S, Nakajima A, Kaya K (1997) J Chem Phys 107:10029–10043

    Article  CAS  Google Scholar 

  11. Zubarev DY, Alexandrova AN, Boldyrev AI, Cui LF, Li X, Wang LS (2006) J Chem Phys 124:124305/1–124305/6

    Article  CAS  Google Scholar 

  12. Tam NM, Ngan VT, de Haeck J, Bhattacharyya S, Le HT, Janssens E, Lievens P, Nguyen MT (2012) J Chem Phys 136:024301/1–024301/8

    Article  Google Scholar 

  13. Sporea C, Rabilloud F, Cosson X, Allouche AR, Aubert-Frécon M (2006) J Chem Phys 110:6032–6038

    Article  CAS  Google Scholar 

  14. Yang JC, Lin LH, Zhang YS, Jalbout AF (2008) Theor Chem Acc 121:83–90

    Article  CAS  Google Scholar 

  15. Hao DS, Liu JR, Wu WG, Yang JC (2009) Theor Chem Acc 124:431–437

    Article  CAS  Google Scholar 

  16. Karamanis P, Marchal R, Carbonniére P, Pouchan C (2011) J Chem Phys 135:044511/1–044511/15

    Article  CAS  Google Scholar 

  17. Li SD, Ren GM, Jin ZH (2003) J Chem Phys 119:10063–10068

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2009) GAUSSIAN 09, Revision C01. Gaussian Inc, Wallingford

    Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Fielicke A, Lyon JT, Haertelt M, Meijer G, Claes P (2009) J Chem Phys 131:171105/1–171105/4

    Article  CAS  Google Scholar 

  22. Vogel M, Kasigkeit C, Hirsch K, Langenberg A, Rittmann J, Zamudio-Bayer V, Kulesza A, Mitrić R, Möller T, Issendorff BV, Lau JT (2012) Phys Rev B 85:195454/1–195454/5

    Article  CAS  Google Scholar 

  23. Lyon JT, Gruene P, Fielicke A, Meijer G, Janssens E, Claes P, Lievens P (2009) J Am Chem Soc 131:1115–1121

    Article  CAS  Google Scholar 

  24. Pouchan C, Bégue D, Zhang DY (2004) J Chem Phys 121:4628–4634

    Article  CAS  Google Scholar 

  25. Honea EC, Ogura A, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1993) Nature 366:42–44

    Article  CAS  Google Scholar 

  26. Lin LH, Yang JC, Ning HM, Hao DS, Fan HW (2008) J Mol Struct Theochem 85:197–206

    Article  Google Scholar 

  27. Ren ZY, Li F, Guo P (2005) J Mol Struct Theochem 718:165–173

    Article  CAS  Google Scholar 

  28. Hossain D Jr, Pittman CU, Gwaltney SR (2008) Chem Phys Lett 451:93–97

    Article  CAS  Google Scholar 

  29. Guo P, Ren ZY, Wang F, Bian J, Han JG, Wang GH (2004) J Chem Phys 121:12265–12275

    Article  CAS  Google Scholar 

  30. Montoya A, Truong TN, Sarofim AF (2000) J Phys Chem A 104:6108–6110

    Article  CAS  Google Scholar 

  31. Wittbrodt JM, Schlegel HB (1996) J Chem Phys 105:6574–6577

    Article  CAS  Google Scholar 

  32. Ang LS, Sulaiman S, Mohamed-Ibrahim MI (2012) Sains Malays 41:445–452

    CAS  Google Scholar 

  33. Brooks RA, Anderson CH, Ramsey NF (1963) Phys Rev Lett 10:441–446

    Article  CAS  Google Scholar 

  34. Kusch P, Hessel MM (1969) J Mol Spectrosc 32:181–201

    Article  CAS  Google Scholar 

  35. Limberger HG, Martin TP (1989) J Chem Phys 90:2979–2991

    Article  CAS  Google Scholar 

  36. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  37. de Heer WA, Knight WD, Chou MY, Cohen ML (1987) Solid State Phys 40:93–181

    Google Scholar 

  38. Lu C, Kuang XY, Lu ZW, Mao AJ, Ma YM (2011) J Phys Chem A 115:9273–9281

    Article  CAS  Google Scholar 

  39. Raghavachari K (1986) J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  40. Gao AM, Li GL, Chang Y, Chen HY, Li QS (2010) J Mol Struct Theochem 961:88–96

    Article  CAS  Google Scholar 

  41. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) J Mol Struct Theochem 895:148–155

    Article  CAS  Google Scholar 

  42. Wang J, Han JG (2005) J Chem Phys 123:064306/1-064306/16

  43. Jaiswal S, Babar VP, Kumar V (2013) Phys Rev B 88:085412/1–085412/14

    Article  CAS  Google Scholar 

  44. Ma L, Wang JG, Wang GH (2013) J Chem Phys 138:094304/1–094304/9

    CAS  Google Scholar 

  45. Zhao RN, Han JG, Bai JT, Sheng LS (2010) Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  46. Shao P, Kuang XY, Ding LP, Zhong MM, Wang ZH (2012) Phys B 407:4379–4386

    Article  CAS  Google Scholar 

  47. Zhao YR, Kuang XY, Zheng BB, Wang SJ, Li YF (2012) J Mol Model 18:275–283

    Article  CAS  Google Scholar 

  48. Chuang FC, Hsieh YY, Hsu CC, Albao MA (2007) J Chem Phys 127:144313/1–144313/6

    Article  CAS  Google Scholar 

  49. Zhang M, Zhang JF, Feng XJ, Zhang HY, Zhao LX, Luo YH, Cao W (2013) J Phys Chem A 117:13025–13036

    Article  CAS  Google Scholar 

  50. Liu B, Lu ZY, Pan B, Wang CZ, Ho KM, Shvartsburg AA, Jarrold MF (1998) J Chem Phys 109:9401–9409

    Article  CAS  Google Scholar 

  51. Lu ZY, Wang CZ, Ho KM (2000) Phys Rev B 61:2329–2334

    Article  CAS  Google Scholar 

  52. Shvartsburg AA, Liu B, Lu ZY, Wang CZ, Jarrold MF, Ho KM (1999) Phys Rev Lett 83:2167–2170

    Article  CAS  Google Scholar 

  53. Bloomfield LA, Freeman RR, Brown WL (1985) Phys Rev Lett 54:2246–2249

    Article  CAS  Google Scholar 

  54. Li YF, Mao AJ, Li Y, Kuang XY (2012) J Mol Model 18:3061–3072

    Article  CAS  Google Scholar 

  55. Raghavachari K, Rohlfing CM (1988) J Chem Phys 89:2219–2234

    Article  CAS  Google Scholar 

  56. Shao P, Kuang XY, Zhao YR, Wang HQ, Li YF (2011) Mol Phys 109:315–323

    Article  CAS  Google Scholar 

  57. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130:164514/1–164514/8

    CAS  Google Scholar 

  58. Ouyang YF, Wang P, Xiang P, Chen HM, Du Y (2012) Comput Theor Chem 984:68–75

    Article  CAS  Google Scholar 

  59. Li LJ, Yao CH, Mu YW, Wan JG, Han M (2009) J Mol Struct Theochem 916:139–146

    Article  CAS  Google Scholar 

  60. Zhou GD, Duan LY (2002) Structural chemistry basis. Peking University Press, Beijing

    Google Scholar 

  61. Zhang XR, Li Y, Yin L, Wang YY (2013) Acta Phys Sin 62:023601/1–023601/9

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Nos. 11304167 and 61306007), Postdoctoral Science Foundation of China (No. 20110491317), and Natural Science Foundation of Nanyang Normal University (No. 132300410209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Zhang or Cheng Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, CG., Jiang, HL., Li, GQ. et al. Theoretical investigation on the geometries and electronic properties of cesium–silicon CsSi n (n = 2–12) clusters. Struct Chem 27, 457–465 (2016). https://doi.org/10.1007/s11224-015-0561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0561-4

Keywords

Navigation