Skip to main content
Log in

Impacts of medium, substituents, and specific interactions with water on hydration of carbonyl compounds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical study on hydration of carbonyl compounds has been done at B3LYP/6-31++G** and MP2/6-31++G** levels. The variations in ΔG hyd and hydration constants are explored in terms of medium effect, substituent effect, and hydrogen bonding abilities of carbonyl compounds and their hydrated products. The dielectric of medium decreases the ΔG hyd values thereby favoring the process. The presence of electron-releasing substituents at the carbonyl carbon disfavors the hydration process, while that of electron-withdrawing substituents favor the process. Hydrogen bonding interactions stabilize the product to a larger extent than the carbonyl molecules, thereby favoring the hydration process. Linear correlation between the calculated log K hyd values and the experimental values is seen in case of specific interactions with water (R = 0.976) than in the case without those interactions (R = 0.955).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kallies B, Mitzner R (1998) J Mol Model 4:183

    Article  CAS  Google Scholar 

  2. Schmeer G, Sturm P (1999) Phys Chem Chem Phys 1:1025

    Article  CAS  Google Scholar 

  3. Yamabe S, Tsuchida N, Hayashida Y (2005) J Phys Chem A 109:7216

    Article  CAS  Google Scholar 

  4. Wolfe S, Kim CK, Yang K, Weinberg N, Shi Z (1995) J Am Chem Soc 117:4240

    Article  CAS  Google Scholar 

  5. French AD, Miller DP (1994) In: Smith DA (ed) Modeling the hydrogen bond, Chap 15. American Chemical Society, Washington, DC

  6. Remko M, Scheiner S (1991) J Pharm Sci 80:328

    Article  CAS  Google Scholar 

  7. Stanton R, Peräkylä M, Bakowies D, Kollman PA (1998) J Am Chem Soc 120:3448

    Article  CAS  Google Scholar 

  8. Keller DA, Heck HAD (1988) Toxicol Lett 42:183

    Article  CAS  Google Scholar 

  9. Steinberg AD (1993) Pediatrics 92:442

    CAS  Google Scholar 

  10. Kauffman RE, Banner W, Berlin CM, Blumer JL, Gorman RL, Lambert GH, Wilson GS, Bennett DR, Cordero JF, Kaufman P, Licata SA, Tomich P, Troendle G, Yaffe SJ, Cote CJ, Temple AR, Reigart JR, Etzel RA, Goldman LR, Hendrick JG, Mofenson HD, Simon PR, Falk H, Miller RW, Rogan W, Jackson RJ (1993) Pediatrics 92:471

    Google Scholar 

  11. Haselkorn T, Whittemore AS, Udaltsova N, Friedman GD (2006) Drug Saf 29:67

    Article  Google Scholar 

  12. Carliera P, Hannachia H, Mouvier G (1967) Atmos Environ 20:2079

    Article  Google Scholar 

  13. Atkinson R (1986) Chem Rev 86:69

    Article  CAS  Google Scholar 

  14. Sulbaek Andersen MP, Toft A, Nielsen OJ, Hurley MD, Wallington TJ, Chishima H, Tonokura K, Malbury SA, Martin JW, Ellis DA (2006) J Phys Chem A 110:9854

    Article  CAS  Google Scholar 

  15. Kanno N, Tonokura K, Hurley MD, Wallington TJ (2008) J Fluor Chem 129:1187

    Article  CAS  Google Scholar 

  16. Guthrie JP (2000) J Am Chem Soc 122:5529

    Article  CAS  Google Scholar 

  17. Guthrie JP, Pitchko V (2000) J Am Chem Soc 122:5520

    Article  CAS  Google Scholar 

  18. Kulkarni AD, Babu K, Gadre SR, Bartolotti LJ (2004) J Phys Chem A 108:2492

    Article  CAS  Google Scholar 

  19. Hazra MK, Francisco JS, Sinha A (2013) J Phys Chem A. doi: 10.1021/jp4008043

  20. Bombarelli RG, Perez MG, Prior MTP, Calle E, Casado J (2009) J Phys Chem A 113:11423

    Article  Google Scholar 

  21. Greenzaid P, Luz Z, Samuel D (1967) J Am Chem Soc 89:749

    Article  CAS  Google Scholar 

  22. Greenzaid P, Luz Z, Samuel D (1967) J Am Chem Soc 89:756

    Article  CAS  Google Scholar 

  23. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  24. Foresman JB, Frisch E (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburg

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KItao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendel A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo C, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. 02. Gaussian, Inc., Wallingford CT

  26. Onsager L (1936) J Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  27. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117

    CAS  Google Scholar 

  28. Cossi M, Mennucci B, Tomasi J (1994) J Chem Phys Lett 228:165

    Article  CAS  Google Scholar 

  29. Wang Y, Cheng X, Yang X, Yang X (2006) J Solut Chem 35:869

    Article  CAS  Google Scholar 

  30. Boys SF, Moran D, Radom L (2007) J Phys Chem A 111:11683

    Article  Google Scholar 

  31. Bell RP (1966) Adv Phys Org Chem 4:1

    CAS  Google Scholar 

  32. Kurz J (1967) J Am Chem Soc 89:3524

    Article  CAS  Google Scholar 

  33. Buschmann HJ, Dutkiewicz E, Knoche W (1982) Ber Bunsenges Phys Chem 86:129

    Article  CAS  Google Scholar 

  34. Guthrie JP, Cullimore PA (1980) Can J Chem 58:1281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to DST (INSPIRE Fellowship Programme) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, D., Kaur, R. & Khanna, S. Impacts of medium, substituents, and specific interactions with water on hydration of carbonyl compounds. Struct Chem 25, 437–450 (2014). https://doi.org/10.1007/s11224-013-0308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0308-z

Keywords

Navigation