Skip to main content
Log in

Interaction models of the Si(OH)2 functionality with Zn2+ cation in simplified biological environments: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We report a DFT study (M06L/cc-pVDZ) of the interactions between the Si(OH)2 group in three simplified gem-silanediols [i.e., N-[dihydroxy(methyl)silyl] methyl}formamide (DHSF), 3-[dihydroxy (methyl) silyl] propanamide (DHSP), and 3,3′-(dihydroxysilanediyl)dipropanamide (DHSDP)], which have a similar structure to silanediol-based inhibitors of metalloproteases, and simplified active site models: [Zn(Imdz)3–OH2]2+ and [Zn(Imdz)2R–OH2]2+, where R can be a formaldehyde, an acetone, or an acetic acid molecule. These models partly resemble the structure of the first coordination sphere of some metalloproteases (e.g., angiotensin I converting enzyme and thermolysin). Different types of bonding patterns were found for the systems into study. The three related silanediols may coordinate with the zinc dication in monodentate, pseudo-bidentate, and pseudo-tridentate way. Pseudo-bidentate interaction was reported to be that corresponding to the silanediol transition-state-analog of the thermolysin enzyme as confirmed by the X-ray structural study (Juers et al., Biochemistry 44:16524–16528, 2005). The binding ability of the mentioned silanediols was determined as the energy of the water displacement reaction for the mentioned active sites models in gas phase and in water solution (PCM model). The calculated binding energies point out to the higher strength of the pseudo-bidentate Zn2+–MBG interaction. Moreover, DHSDP ligand is calculated to be the strongest MBG for Zn2+ in both active sites models. NBO population analysis and the AIM methodology were implemented as a tool for evaluating electronic structure of the complexes. The results obtained may point out to the fact that the higher the electronic delocalization around the metal center is, the stronger the interaction between the MBG and the active site, bringing about a higher binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leung D, Abbenante G, Fairlie DP (2000) J Med Chem 43:305–341

    Article  CAS  Google Scholar 

  2. Natesh R, Schwager SLU, Evans HR, Sturrock ED, Acharya KR (2004) Biochemistry 43:8718–8724

    Article  CAS  Google Scholar 

  3. Turner AJ, Hooper NM (2002) Trends Pharmacol Sci 23:177–183

    Article  CAS  Google Scholar 

  4. Burnier M, Brunner HR (2000) Lancet 355:637–645

    Article  CAS  Google Scholar 

  5. Massie BM (1998) Lancet 352(Suppl I):SI29–SI33

    Google Scholar 

  6. Bruinsm M, Janssen A, Boom R (2001) Appl Biochem Biotechnol 90:155–186

    Article  Google Scholar 

  7. Gupta SP (2007) Chem Rev 107:3042–3087

    Article  CAS  Google Scholar 

  8. Morgan BP, Scholtz JM, Ballinger MD, Zipkin ID, Bartlett PA (1991) J Am Chem Soc 113:297–307

    Article  CAS  Google Scholar 

  9. Tian GR, Wang S-H, Wang S-F, Meng L-Q, Li H, Zeng Z-H, Jin J-Y (2011) Med Chem Commun 2:698–700

    Article  CAS  Google Scholar 

  10. Borkakoti N (2004) Biochem Soc Trans 32:17–20

    Article  CAS  Google Scholar 

  11. Ondetti MA, Rubin B, Cushman DW (1977) Science 196:441–444

    Article  CAS  Google Scholar 

  12. Patchett AA, Harris E, Tristram EW, Wyvratt MJ, Wu MT, Taub D, Peterson ER, Ikeler TJ, Broeke JT, Payne LG, Ondeyka DL, Thorsett ED, Greenlee WJ, Lohr NS, Hoffsommer RD, Joshua H, Ruyle WV, Rothrock JW, Aster SD, Maycock AL, Robinson FM, Hirschmann R, Sweet CS, Ulm EH, Gross DM, Vassil TC, Stone CA (1980) Nature 288:280–283

    Article  CAS  Google Scholar 

  13. Sieburth SM, Nittoli T, Mutahu A, Guo L (1998) Angew Chem Int Ed 37:811–814

    Article  Google Scholar 

  14. Chen C-A, Sieburth SMcN, Glekas A, Hewitt GW, Trainor GL, Erickson-Viitanen S, Garber SS, Cordova B, Jeffry S, Klabe RM (2001) Chem Biol 8:1161–1166

    Article  CAS  Google Scholar 

  15. Mutahi MWa, Nittoli T, Guo L, Sieburth SMcN (2002) J Am Chem Soc 124:7363–7375

    Article  CAS  Google Scholar 

  16. Kim J, Glekas A, Sieburth SMcN (2002) Bioorg Med Chem Lett 12:3625–3627

    Article  CAS  Google Scholar 

  17. West R, Wilson LS, Powell DL (1979) J Organomet Chem 178:5–9

    Article  CAS  Google Scholar 

  18. Damrauer R, Kass SR, Depuy CH (1988) Organometallics 7:637–640

    Article  CAS  Google Scholar 

  19. Frison G, Ohanessian G (2007) J Comput Chem 29:416–433

    Article  Google Scholar 

  20. Wyvratt MJ, Patchett AA (1985) Med Res Rev 5:483–531

    Article  CAS  Google Scholar 

  21. Kimura E (2001) Acc Chem Res 34:171–179

    Article  CAS  Google Scholar 

  22. Šramko M, Garaj V, Remko M (2008) J Mol Struct (Theochem) 869:19–28

    Article  Google Scholar 

  23. Dedachi K, Hassan Khan MT, Sylte I, Kurita N (2009) Chem Phys Lett 479:290–295

    Article  CAS  Google Scholar 

  24. Dedachi K, Hirakawa T, Fujita S, Hassan Khan MT, Sylte I, Kurita N (2011) J Comput Chem 32:3047–3057

    Article  CAS  Google Scholar 

  25. Hirakawa T, Fijita S, Ohyama T, Dedachi K, Hassan Khan MT, Sylte I, Kurita N (2012) J Mol Graph Model 33:1–11

    Article  CAS  Google Scholar 

  26. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Nature 401:188–193

    Article  CAS  Google Scholar 

  27. Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, Tang J, Sang BC, Verner E, Wynands R, Leahy EM, Dougan DR, Snell G, Navre M, Knuth MW, Swanson RV, McRee DE, Tari LW (2004) Structure 12:1325–1334

    Article  CAS  Google Scholar 

  28. Cheng F, Zhang R, Luo X, Shen J, Li X, Gu J, Zhu W, Shen J, Sagi I, Ji R, Chen K, Jiang H (2002) J Phys Chem B 106:4552–4559

    Article  CAS  Google Scholar 

  29. Smieško M, Remko MJ (2003) Biomol Struct Dyn 20:759–770

    Article  Google Scholar 

  30. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  Google Scholar 

  31. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  33. Amin EA, Truhlar DG (2008) J Chem Theory Comput 4:75–80

    Article  CAS  Google Scholar 

  34. Sorkin A, Iron MA, Truhlar DG (2008) J Chem Theory Comput 4:307–315

    Article  CAS  Google Scholar 

  35. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  36. Zeng Y, Wang S, Feng H, Xie Y, King RB (2011) Int J Mol Sci 12:2216–2231

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision B.1. Gaussian Inc., Wallingford

    Google Scholar 

  38. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  39. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  40. Glendening ED, Reed AE, Carperter JE, Weinhold F (1988) NBO Version 3.1, Madison

  41. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  42. Biegler-König FW, Schönbohm J (2002) J. Comput Chem 23:1489–211494

    Article  Google Scholar 

  43. Biegler-König F, Schönbohm J (2000) AIM2000. University of Applied Sciences, Bielefeld

  44. MacCall KA, Huang C-C, Fierke CA (2000) J Nutr 130:1437S–1446S

    Google Scholar 

  45. Rodríguez Ortega PG, Montejo M, López González JJ (2013) (Results to be published)

  46. Juers DH, Kim J, Matthews BW, Sieburth SM (2005) Biochemistry 44:16524–16528

    Article  CAS  Google Scholar 

  47. Ho J, Klamt A, Coote ML (2010) J Phys Chem A 114:13442–13444

    Article  CAS  Google Scholar 

  48. Popelier P (2000) Atoms in molecules. An introduction. Pearson Education, London

    Google Scholar 

Download references

Acknowledgments

The authors thank Andalusian government for funding (FQM173). P.G.R.O. thanks Spanish Ministerio de Educación for a Ph.D. studentship (AP2009-3949) supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. López González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Ortega, M.P.G., Montejo, M. & López González, J.J. Interaction models of the Si(OH)2 functionality with Zn2+ cation in simplified biological environments: a DFT study. Struct Chem 25, 127–138 (2014). https://doi.org/10.1007/s11224-013-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0258-5

Keywords

Navigation