Skip to main content
Log in

Synthesis and Crystal Structure Analysis of NH4[Zn(cma)(H2O)2]·H2O Using IAM and HAR Approaches

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of NH4[Zn(cma)(H2O)2]·H2O (cma3– = N-carboxymethylaspartate(3–)) is determined by single crystal X-ray structure analysis. The orthorombic crystals (P212121, a = 7.7901(4) Å, b = 11.2368(4) Å, c = 13.2048(5) Å, α = β = γ = 90°, Z = 4) were obtained from the reaction mixture in the form of racemic conglomerate. The single crystal X-ray structure analysis revealed the maximum deviation of bond angles around the Zn atom from an ideal octahedral geometry 14.09° with  = 67.23° and Θ = 236.69°. Intermolecular interactions are based mainly on a moderate N–H⋯O and O–H⋯O hydrogen bonds. The structure shares similar structural features with other structures containing aspartates and their derivatives as a ligands. The results of using different HAR methods based on semi-empirical (B3LYP) and non-empirical (PBE0) global hybrid GGA DFT functionals were compared.

Graphical Abstract

The crystal structure of NH4[Zn(cma)(H2O)2]·H2O (cma3– = N-carboxymethylaspartate(3–)) is determined by single crystal X-ray structure analysis. The orthorombic crystals (P212121, a = 7.7901(4) Å, b = 11.2368(4) Å, c = 13.2048(5) Å, α = β = γ = 90°, Z = 4) were obtained from the reaction mixture in the form of racemic conglomerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The deposition numbers CCDC 2152269–2152272 contain the supplementary crystallographic data for this paper (including structure factors). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif or Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033. Crystallographic data can be also obtained from Crystallography Open Database (COD) via https://www.crystallography.net/384cod/search.html under the COD ID 3000339–3000342.

References

  1. Maderová J, Pavelčík F, Marek J (2002) N-(Carboxymethyl)aspartic acid. Acta Crystallogr Sect E Struct Rep Online 58:o469–o470. https://doi.org/10.1107/s1600536802004117

    Article  Google Scholar 

  2. Loginova ES, Nikolskii VM, Tolkacheva LN, Lukyanova NI (2016) Synthesis and some properties of complexones, succinic acid derivatives. Russ Chem Bull 65:2206–2210. https://doi.org/10.1007/s11172-016-1569-7

    Article  CAS  Google Scholar 

  3. Kaparullina EN, Doronina NV, Ezhov VA, Trotsenko YA (2012) EDTA degradation by cells of Chelativorans oligotrophicus immobilized on a biofilter. Appl Biochem Microbiol 48:396–400. https://doi.org/10.1134/S0003683812040096

    Article  CAS  Google Scholar 

  4. Smirnova TI, Khizhnyak SD, Nikol’skii VM et al (2017) Degradation of complexons derived from succinic acid under UV radiation. Russ J Appl Chem 90:507–511. https://doi.org/10.1134/S1070427217040024

    Article  CAS  Google Scholar 

  5. Cherrier MV, Cavazza C, Bochot C et al (2008) Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry 47:9937–9943. https://doi.org/10.1021/bi801051y

    Article  CAS  PubMed  Google Scholar 

  6. Knyazeva NE (2002) Complexation of Zn2+ with N-(carboxymethyl)aspartic acid. Russ J Inorg Chem 47:718–720

    Google Scholar 

  7. Knyazeva NE, Nikol’skii VM, Gorelov IP, (2002) A pH- and redox-potentiometric study of equilibria between Fe(II), Fe(III), and N-(carboxymethyl)aspartic acid. Russ J Coord Chem 28:127–130. https://doi.org/10.1023/A:1014236202268

    Article  CAS  Google Scholar 

  8. Knyazeva NE, Nikol’skii VM, Alekseev VG et al (2002) Complexation of Fe2+ with N-(carboxymethyl)aspartic and iminodisuccinic acids. Russ J Inorg Chem 47:216–219

    Google Scholar 

  9. Nikol’skiǐ VM, Knyazeva NE, Gorelov IP (2004) Mn2+ and Cu2+ complexation with N-(carboxymethyl) aspartic acid by potentiometry. Russ J Inorg Chem 49:799–801

    Google Scholar 

  10. Gorelov IP, Knyazeva NE, Nikol’skiǐ VM (2004) Complexation of Co2+ and Ni2+ with N-(carboxymethyl)aspartic acid by potentiometry. Russ J Inorg Chem 49:802–804

    Google Scholar 

  11. Maderová J, Marek J, Pavelčík F (2003) [N-(Carboxylatomethyl)aspartato(3-)]-(ethylenediamine)cobalt(III) trihydrate. Acta Crystallogr Sect C Cryst Struct Commun 59:1996–1998. https://doi.org/10.1107/S0108270103006449

    Article  CAS  Google Scholar 

  12. Capelli SC, Bürgi H-B, Dittrich B et al (2014) Hirshfeld atom refinement. IUCrJ 1:361–379. https://doi.org/10.1107/S2052252514014845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rigaku Oxford Diffraction (2018) CrysAlisPro Software system, version 1.171.39.46. Rigaku Corporation, Oxford

    Google Scholar 

  14. Pavelcik F (1999) XFPA 98: a program for automatic structure determination and automatic refinement. J Appl Crystallogr 32:839–840. https://doi.org/10.1107/S0021889899007451

    Article  CAS  Google Scholar 

  15. Pavelčík F, Pivovarčíková O (2002) Patterson oriented automatic structure determination: superposition pseudosymmetry. J Appl Crystallogr 35:526–532

    Article  Google Scholar 

  16. Božeková I (2020) Selection of testing structures and preliminary testing of XFPB software. Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava

    Google Scholar 

  17. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  18. Kleemiss F, Dolomanov OV, Bodensteiner M et al (2021) Accurate crystal structures and chemical properties from NoSpherA2. Chem Sci 12:1675–1692. https://doi.org/10.1039/d0sc05526c

    Article  CAS  Google Scholar 

  19. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:4–9. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  20. Bernardinelli G, Flack H (1985) Least-squares absolute-structure refinement. Practical experience and ancillary calculations. Acta Crystallogr Sect A 41:500–511

    Article  Google Scholar 

  21. Hooft RWW, Straver LH, Spek AL (2008) Determination of absolute structure using Bayesian statistics on Bijvoet differences. J Appl Crystallogr 41:96–103. https://doi.org/10.1107/S0021889807059870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marchivie M, Guionneau P, Létard J-F, Chasseau D (2005) Photoinduced spintransition: the role of the iron(II) environment distortion. Acta Crystallogr Sect B Struct Sci 61:25–28. https://doi.org/10.1107/S0108768104029751

    Article  CAS  Google Scholar 

  23. McCusker JK, Rheingold AL, Hendrickson DN (1996) Variable-temperature studies of laser-initiated 5T21A1 intersystem crossing in spin-crossover complexes: empirical correlations between activation parameters and ligand structure in a series of polypyridyl ferrous complexes. Inorg Chem 35:2100–2112. https://doi.org/10.1021/ic9507880

    Article  CAS  Google Scholar 

  24. Ketkaew R, Tantirungrotechai Y, Harding P et al (2021) OctaDist: a tool for calculating distortion parameters in spin crossover and coordination complexes. J Chem Soc Dalt Trans 50:1086–1096. https://doi.org/10.1039/D0DT03988H

    Article  CAS  Google Scholar 

  25. Colomb G, Bernauer K (1977) Stereoselectivity in reactions of metal complexes. V). Synthesis of mixed-ligand cobalt(III) complexes with (S)-aspartic-N-monoacetic acid and different amino-acids. Helv Chim Acta 60:459–467

    Article  CAS  Google Scholar 

  26. Spackman PR, Turner MJ, McKinnon JJ et al (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006–1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jayatilaka D, Grimwood DJ (2003) Tonto: A Fortran based object-oriented system for quantum chemistry and crystallography. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2660:142–151. https://doi.org/10.1007/3-540-44864-0_15

    Article  Google Scholar 

  28. Plevová K, Kisszékelyi P, Vargová D et al (2021) Diastereoselective double C−H functionalization of chiral ferrocenes with heteroaromatics. Chem A Eur J 27:15501–15507. https://doi.org/10.1002/chem.202102624

    Article  CAS  Google Scholar 

  29. Peňaška T, Modrocká V, Stankovianska K et al (2022) Organocatalytic diastereodivergent enantioselective formal oxa-diels-alder reaction of unsaturated ketones with enoates under liquid-assisted grinding conditions. Chemsuschem 15:e202200028. https://doi.org/10.1002/cssc.202200028

    Article  CAS  PubMed  Google Scholar 

  30. Allen FH, Bruno IJ (2010) Bond lengths in organic and metal-organic compounds revisited: X–H bond lengths from neutron diffraction data. Acta Crystallogr Sect B Struct Sci 66:380–386. https://doi.org/10.1107/S0108768110012048

    Article  CAS  Google Scholar 

  31. Cooper RI, Thompson AL, Watkin DJ (2010) CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J Appl Crystallogr 43:1100–1107. https://doi.org/10.1107/S0021889810025598

    Article  CAS  Google Scholar 

  32. Hammershøi A, Sargeson AM, Steffen WL (1984) Reactivity studies of chelated maleate ion: stereoselectivity and structural correlations. J Am Chem Soc 106:2819–2837. https://doi.org/10.1021/ja00322a016

    Article  Google Scholar 

  33. Oonishi I, Sato S, Saito Y (1975) The crystal structure of calcium cis(N)–trans(O6)-bis-(L-aspartato)cobaltate(III)–water (2/15). Acta Crystallogr Sect B 31:1318–1324. https://doi.org/10.1107/S0567740875005134

    Article  Google Scholar 

  34. Sekizaki M (1978) The crystal structure of L-asparaginato-D-aspartatocobalt(III) monohydrate. Bull Chem Soc Jpn 51:1991–1995. https://doi.org/10.1246/bcsj.51.1991

    Article  CAS  Google Scholar 

  35. Flaig R, Koritsanszky T, Zobel D, Luger P (1998) Topological analysis of the experimental electron densities of amino acids. 1. D, L-Aspartic acid at 20 K. J Am Chem Soc 120:2227–2238. https://doi.org/10.1021/ja972620e

    Article  CAS  Google Scholar 

  36. Madsen D, Pattison P (2000) N-Methyl-DL-aspartic acid monohydrate. Acta Crystallogr Sect C Cryst Struct Commun 56:1157–1158. https://doi.org/10.1107/S0108270100008593

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and of Slovak Academy of Sciences VEGA 2/0019/19 and by the Operation Program of Integrated Infrastructure for the project, UpScale of Comenius University Capacities and Competence in Research, Development and Innovation, ITMS2014+: 313021BUZ3, co-financed by the European Regional Development Fund. The authors thank to prof. František Pavelčík for supplying development version of his XFPB software and Mgr. Ivana Božeková for her vast amount of work during preliminary testing phase.

Author information

Authors and Affiliations

Authors

Contributions

YPR refined and described the synthesis of the ligand. JC and YPR prepared the title compound. ER with YPR did the X-ray structure determination and prepared the figures. All authors contributed to the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Erik Rakovský.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrappová, J., Pateda, Y.R. & Rakovský, E. Synthesis and Crystal Structure Analysis of NH4[Zn(cma)(H2O)2]·H2O Using IAM and HAR Approaches. J Chem Crystallogr 53, 228–235 (2023). https://doi.org/10.1007/s10870-022-00961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00961-1

Keywords

Navigation