Skip to main content
Log in

Structure and energetic properties of 1,5-dinitrobiuret

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The two-dimensional potential energy scan shows that the pseudo-trans conformer of 1,5-dinitrobiuret (DNB) is the most stable form of isolated molecule, while the pseudo-cis conformer is about 7.5 kJ/mol higher in energy. Thus, the structure of gaseous DNB is different from that in crystal state, where the molecules have pseudo-cis conformation. The value of enthalpy of formation of gaseous DNB (−257 ± 5 kJ/mol) is calculated from isodesmic reactions using G4 energies. Combining this value with empirically estimated enthalpy of sublimation, the enthalpy of formation of crystal DNB is predicted to be −415 ± 15 kJ/mol. The bond dissociation enthalpies are calculated for all bonds. The energy of the weakest N–NO2 bonds is equal to 190–200 kJ/mol. Similar calculations were carried out for biuret. The gaseous biuret exists predominantly in the pseudo-trans form. The calculated enthalpy of formation of gaseous biuret agrees well with the experimental one. The correlation of calculated bond energies with corresponding bond distances and electron density is discussed for biuret and DNB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Teipel U (ed) (2005) Energetic materials. Wiley, Weinheim

    Google Scholar 

  2. Geith J, Holl G, Klapötke TM, Weigand JJ (2004) Combust Flame 139:358

    Article  CAS  Google Scholar 

  3. Geith J, Klapötke TM, Weigand JJ, Holl G (2004) Prop Explos Pyrotech 29:3

    Article  CAS  Google Scholar 

  4. Liu J, Chambreau SD, Vaghjiani GL (2011) J Phys Chem A 115:8064

    Article  CAS  Google Scholar 

  5. Aida K (1961) J Inorg Nucl Chem 23:155

    Article  CAS  Google Scholar 

  6. Aida K (1963) J Inorg Nucl Chem 25:165

    Article  CAS  Google Scholar 

  7. Freeman HS, Smith JEWL (1966) Acta Crystallogr 20:153

    Article  CAS  Google Scholar 

  8. Mintcheva N, Mitew M, Enchev V, Nishihara Y (2003) J Coord Chem 56:299

    Article  CAS  Google Scholar 

  9. Thulstrup PW, Larsen E (2006) Dalton Trans 1784

  10. Korolevich MV, Lastochkina VA, Frenkel ML, Kabo GY (1991) J Mol Struct 243:211

    Article  CAS  Google Scholar 

  11. Leszczyński J, Sullivan RH (1992) Int J Quant Chem 44:301

    Article  Google Scholar 

  12. Jabalameli A, Nowek A, Hart O, Sullivan R, Leszczynski J (1998) J Mol Struct (Theochem) 425:161

    Article  CAS  Google Scholar 

  13. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108

    Article  Google Scholar 

  14. Kozyro AA, Frenkel ML, Krasulin AP, Simirskii VV, Kabo GY (1988) Russ J Phys Chem 62:897

    Google Scholar 

  15. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  16. He X, Zhang J, Gao H (2012) Int J Quant Chem 112:1688

    Article  CAS  Google Scholar 

  17. Marochkin II, Dorofeeva OV (2012) Comp Theor Chem 991:182

    Article  CAS  Google Scholar 

  18. Dorofeeva OV, Kolesnikova IN, Marochkin II, Ryzhova ON (2011) Struct Chem 22:1303

    Article  CAS  Google Scholar 

  19. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  20. Raghavachari K, Stefanov BB, Curtiss LA (1997) Mol Phys 91:555

    CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision D01). Gaussian Inc., Pittsburgh

    Google Scholar 

  22. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor–acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A, Smith NK (1997) J Chem Eng Data 42:1037

    Article  CAS  Google Scholar 

  24. Verevkin SP (1998) J Chem Thermodyn 30:1069

    Article  CAS  Google Scholar 

  25. Miroshnichenko EA, Kon′kova TS, Matyushin YN, Inozemtsev YO (2009) Russ Chem Bull 58:2015

    Article  CAS  Google Scholar 

  26. Keshavarz MH (2010) J Hazard Mater 177:648

    Article  CAS  Google Scholar 

  27. Mathieu D (2012) Ind Eng Chem Res 51:2814

    Article  CAS  Google Scholar 

  28. Luo Y (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant of President of Russian Federation for State Support of Leading Scientific Schools NSh-2724.2012.3 and Russian Foundation for Basic Research under Grant No. 13-03-00110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Dorofeeva.

Additional information

In honor of Professor Aldo Domenicano on the occasion of his 75th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11224_2012_176_MOESM1_ESM.pdf

Supplementary material: Supplementary data associated with this article: calculated enthalpies of formations, G4 enthalpies, ZPE, and thermal corrections for biuret, DNB and radicals used in bond energy calculations (Table S1) and experimental enthalpies of formations, G4 enthalpies, ZPE, and thermal corrections for reference compounds used in isodesmic reaction calculations (Table S2) (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suntsova, M.A., Marochkin, I.I. & Dorofeeva, O.V. Structure and energetic properties of 1,5-dinitrobiuret. Struct Chem 24, 745–750 (2013). https://doi.org/10.1007/s11224-012-0176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0176-y

Keywords

Navigation