Skip to main content
Log in

Density functional study of benzene adsorption on the α-Mo2C(0001) surface

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molybdenum carbide (Mo2C) is a valuable industrial catalyst for hydrogenation (HYD) of aromatic compounds—an essential step in in-situ heavy-oil upgrading. Despite the intensive studies on catalytic properties of molybdenum carbides, the basic mechanism of HYD reactions occurring on the surface of Mo2C remains vague. We studied the adsorption of benzene on an α-Mo2C(0001) surface at 0.25-mL coverage with first-principles density functional theory (DFT) calculations to provide further insight into the catalytic mechanism. Five high-symmetry adsorption sites combined with two different orientations of the aromatic ring parallel to the surface were investigated at the GGA-PBE level of DFT. Our results suggest that hollow sites are preferred over bridge sites. For the most favorable adsorption sites, i.e., Hc and Vc, the adsorption energy is ca. −2.5 eV. In addition, DFT-D2 calculations were carried out to incorporate the effect of dispersion. Consequently, the adsorption energies at various sites increased by ca. −1.3 eV in general, while the adsorption geometries were little affected. Analysis of the optimized adsorption geometries and the partial density of states revealed a strong interaction between the aromatic ring of benzene and the Mo2C surface, which leads to the rehybridization of benzene carbon atoms, from sp 2 to sp 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumashiro Y (2000) Electric refractory materials. Marcel Dekker, New York

    Book  Google Scholar 

  2. Da Costa P, Lemberton J-L, Potvin C, Manoli J-M, Perot G, Breysse M, Djega-Mariadassou G (2001) Catal Today 65:195

    Article  CAS  Google Scholar 

  3. Mamède AS, Giraudon JM, Löfberg A, Leclercq L, Leclercq G (2002) Appl Catal A 227:73

    Article  Google Scholar 

  4. Leclercq L, Provost M, Pastor H, Leclercq G (1989) J Catal 117:384

    Article  CAS  Google Scholar 

  5. Nasr TN (2003) Steam assisted gravity drainage (SAGD): a new oil production technology for heavy oil and bitumens. Alberta Research Council, Calgary

    Google Scholar 

  6. McColl D (2009) Green bitumen: the role of nuclear, gasification and CS in Alberta’s oil sands. Canadian Energy Research Institute, Calgary

    Google Scholar 

  7. María Laura Frauwallner, (2009) Master’s Thesis, University of Calgary, Canada

  8. Hugosson HW, Eriksson O, Nordstrom L, Jansson U, Fast L, Delin A, Wills JM, Johansson B (1999) J Appl Phys 86:3758

    Article  CAS  Google Scholar 

  9. Page K, Li J, Savinelli R, Szumila HN, Zhang JP, Stalick JK, Proffen T, Scott SL, Seshadri R (2008) Solid State Sci 10:1499

    Article  CAS  Google Scholar 

  10. Ren J, Huo C-F, Wang J, Li Y-W, Jiao H (2005) Surf Sci 596:212

    Article  CAS  Google Scholar 

  11. Ren J, Huo C-F, Wang J, Cao Z, Li Y-W, Jiao H (2006) Surf Sci 600:2329

    Article  CAS  Google Scholar 

  12. Zhang J, Wu W (2008) China Pet Process Petrochem Technol 4:41

    Google Scholar 

  13. Lee JS, Yeom MH, Park KY, Nam IS, Chung JS, Kim YG, Moon SH (1991) J Catal 128:126

    Article  CAS  Google Scholar 

  14. Rocha AS, da Silva VT, Eon JG, de Menezes SMC, Faro AC, Rocha AB (2006) J Phys Chem B 110:15803

    Article  CAS  Google Scholar 

  15. Rocha AS, Rocha AB, Teixeira Da Silva V (2010) Appl Catal A Gen 379:54

    Article  CAS  Google Scholar 

  16. Morin C, Simon D, Sautet P (2003) J Phys Chem B 107:2995

    Article  CAS  Google Scholar 

  17. Morin C, Simon D, Sautet P (2004) J Phys Chem B 108:5653

    Article  CAS  Google Scholar 

  18. Gonze X, Beuken J-M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J-Y, Allan DC (2002) Comput Mater Sci 25:478

    Article  Google Scholar 

  19. Kress G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  Google Scholar 

  20. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  21. Fuchs M, Scheffler M (1999) Phys Commun 119:67

    Article  CAS  Google Scholar 

  22. Blöchl P (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  23. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  24. Grimme S (2006) J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1997) Phys. Rev. Lett. 78:1396

    Article  CAS  Google Scholar 

  27. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56

    Article  CAS  Google Scholar 

  28. Lucy TE, St. Clair TP, Oyama ST (1998) J Mater Res 13:2321

    Article  CAS  Google Scholar 

  29. Oyama ST, Yu CC, Ramanathan S (1999) J Catal 184:535

    Article  CAS  Google Scholar 

  30. Rodriguez JA, Dvorak J, Jirsak T (2000) Surf Sci 457:L413

    Article  CAS  Google Scholar 

  31. Schwartz V, da Silva VT, Oyama ST (2000) J Mol Catal A 163:251

    Article  CAS  Google Scholar 

  32. Sheppard N (1988) Annu Rev Phys Chem 39:589

    Article  CAS  Google Scholar 

  33. Netzer FP (1991) Langmuir 7:2544

    Article  CAS  Google Scholar 

  34. Saeys M, Reyniers M, Thybaut JW, Neurock M, Marin GB (2005) J Catal 236:129

    Article  CAS  Google Scholar 

  35. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2005) Catal Today 105:66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pedro Pereira’s group at the University of Calgary for useful discussions on the synthesis and characterization of the Mo2C catalyst as well as the catalytic mechanism. We gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada through a CIAM (InterAmericas Collaboration on Materials) grant as well as the provision of computational resources by Compute Canada/WestGrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis R. Salahub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Liu, X., Cuervo, J. et al. Density functional study of benzene adsorption on the α-Mo2C(0001) surface. Struct Chem 23, 1459–1466 (2012). https://doi.org/10.1007/s11224-012-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0064-5

Keywords

Navigation