Skip to main content
Log in

Density functional theoretical studies on the methanol adsorption and decomposition on Ru(0001) surfaces

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Periodic density functional theory(DFT) calculations are presented to describe the adsorption and decomposition of CH3OH on Ru(0001) surfaces with different coverages, including p(3×2), p(2×2), and p(2×1) unit cells, corresponding to monolayer(ML) coverages of 1/6, 1/4, and 1/2, respectively. The geometries and energies of all species involved in methanol dissociation were analyzed, and the initial decomposition reactions of methanol and the subsequent dehydrogenations reactions of CH3O and CH2OH were all computed at 1/2, 1/4, and 1/6 ML coverage on the Ru(0001) surface. The results show that coverage exerts some effects on the stable adsorption of CH3O, CH2OH, and CH3, that is, the lower the coverage, the stronger the adsorption. Coverage also exerts effects on the initial decomposition of methanol. C—H bond breakage is favored at 1/2 ML, whereas C—H and O—H bond cleavages are preferred at 1/4 and 1/6 ML on the Ru(0001) surface, respectively. At 1/4 ML coverage on the Ru(0001) surface, the overall reaction mechanism can be written as 9CH3OH→3CH3O+6CH2OH+9H→6CH2O+3CHOH+18H→ 7CHO+COH+CH+OH+26H→8CO+C+O+36H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nislsen M., Alberico E., Baunann W., Drexler H. J., Junge H., Gladiali S., Beller M., Nature, 2013, 495, 85

    Article  Google Scholar 

  2. Rdddington E., Sapienza A., Gurau B., Viswanathan R., Sarangapani S., Smotkin E. S., Mallouk T. E., Science, 1998, 280, 1735

    Article  Google Scholar 

  3. Guo Q., Li L. R., Lu L., Ji Y., Lu T. H., Chem. J. Chinese Universities, 2012, 33(5), 1007

    CAS  Google Scholar 

  4. Hamnett A., Catal. Today., 1997, 38, 445

    Article  CAS  Google Scholar 

  5. Oetjen H. F., Schmidt V. M., Stimming U., Trila F., J. Electrochem. Soc., 1996, 143, 3838

    Article  CAS  Google Scholar 

  6. Gazdzicki, P., Jakob P., J. Phys. Chem. C, 2010, 114, 2655

    Article  CAS  Google Scholar 

  7. Loveless B. T., Buda C., Neurock M., Iglesia E., J. Am. Chem. Soc., 2013, 135, 6107

    Article  CAS  Google Scholar 

  8. Barros R. B., Garcia A. R., Ilharco L. M., J. Phys. Chem. B, 2001, 105, 11186

    Article  CAS  Google Scholar 

  9. Barros R. B., Garcia A. R., Ilharco L. M., Surf. Sci., 2003, 532-535, 185

    Article  Google Scholar 

  10. Barros R. B., Garcia A. R., Ilharco L. M., Surf. Sci., 2004, 572, 277

    Article  CAS  Google Scholar 

  11. Hrbek J., DePaola R. A., Hoffmann F. M., J. Chem. Phys., 1984, 81, 2818

    Article  CAS  Google Scholar 

  12. Gazdzicki P., Uvdal P., Jakob P., J. Chem. Phys., 2009, 130, 224703

    Article  Google Scholar 

  13. García-Muelas R., Li Q., López N., ACS Catal., 2015, 5, 1027

    Article  Google Scholar 

  14. Moura A. S., Fajín J. L. C., Pinto A. S. S., Mandado M., Cordeiro M. N. D. S., 2015, 119, 27382

  15. Kresse G., Hafner J., Phys. Rev. B, 1994, 49, 14251

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmüller J., Comput. Mater. Sci., 1996, 6, 15

    Article  CAS  Google Scholar 

  17. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B, 1992, 46, 6671

    Article  CAS  Google Scholar 

  18. Blöchl P. E., Phys. Rev. B, 1994, 50, 17953

    Article  Google Scholar 

  19. Kresse G, Joubert D., Phys. Rev. B, 1999, 59, 1758

    Article  CAS  Google Scholar 

  20. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, 5188

    Article  Google Scholar 

  21. Henkelman G., Uberuaga B. P., Jonsson H., J. Chem. Phys., 2000, 113, 9901

    Article  CAS  Google Scholar 

  22. Huberty J. S., Madix R. J., Surf. Sci., 1996, 360, 144

    Article  CAS  Google Scholar 

  23. Desai S. K., Neurock M., Kourtakis K., J. Phys. Chem. B, 2002, 106, 2559

    Article  CAS  Google Scholar 

  24. Gazdzicki P., Uvdal P., Jakob P., J. Chem. Phys., 2009, 130, 224703

    Article  Google Scholar 

  25. Gomes J. R. B., Gomes J. A. N. F., J. Mol. Struc.(Theochem.), 2000, 503, 189

    Article  CAS  Google Scholar 

  26. Niu C. Y., Jiao J., Xing B., Wang G. C., Bu X. H., J. Comput. Chem., 2010, 31, 2023

    CAS  Google Scholar 

  27. Wang G. C., Li J., Xu X. F., J. Comput. Chem., 2005, 26, 871

    Article  CAS  Google Scholar 

  28. Wang H. F., Liu Z. P., J. Am. Chem. Soc., 2008, 130, 10996

    Article  CAS  Google Scholar 

  29. Lv C. Q., Liu J. H., Guo Y., Wang G. C., Phys. Chem. Chem. Phys., 2012, 14, 6869

    Article  CAS  Google Scholar 

  30. Lv C. Q., Liu J. H., Song X. F., Guo Y., Wang G. C., J. Mol. Model., 2014, 20, 2137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunqin LÜ or Guichang Wang.

Additional information

Supported by the Key Program of Natural Science of Tianjin, China(No.13JCZDJC26800), the National Natural Science Foundation of China(Nos.21503122, 21346002), the Shanxi Province Science Foundation for Youths, China(No.2014021016-2), the Scientific and Technological Programs in Shanxi Province, China(No.2015031017) and the Foundation of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., LÜ, C., Jin, C. et al. Density functional theoretical studies on the methanol adsorption and decomposition on Ru(0001) surfaces. Chem. Res. Chin. Univ. 32, 234–241 (2016). https://doi.org/10.1007/s40242-016-5416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5416-z

Keywords

Navigation