Skip to main content
Log in

Theoretical study on the hydrogen bonding interactions in 1:1 supermolecular complexes of noradrenaline with water

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometries, energies, and IR characteristics of 1:1 noradrenaline–water (NA–H2O) complexes are studied at the ωB97XD/6-311++G(d,p) level. Various type of hydrogen bonds (H-bonds) are formed in these NA–H2O complexes, and the quantum theory of the atoms in molecules and natural bond orbital analyses are used to understand the nature of hydrogen bonding interactions. The intramolecular H-bond formed between the hydroxyl group and the amino N atom in free NA molecule is replaced by two intermolecular H-bonds and results in the formation of the most stable NA–H2O complex. In addition, the intramolecular H-bond keeps untouched in other NA–H2O complexes, moreover, it is strengthened by the intermolecular H-bonds in some NA–H2O complexes due to the cooperativity, whereas no such cooperativity is found in the other NA–H2O complexes in which the intermolecular H-bonds are away from the side chain of NA. Our researches show that the hydrogen bonding interaction is not the unique factor for the relative stabilities of NA–H2O complexes, and the structural deformation plays an important role as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Mourik T (2005) Chem Phys Lett 414:364

    Article  Google Scholar 

  2. Snoek LC, van Mourik T, Carcabal P, Simons JP (2003) Phys Chem Chem Phys 5:4519

    Article  CAS  Google Scholar 

  3. Miller TF, Clary DC (2004) J Phys Chem B 108:2484

    Article  CAS  Google Scholar 

  4. Song YZ (2007) Spectrosc Acta A 67:1169

    Article  Google Scholar 

  5. Perati PR, Cheng J, Jandik P, Hanko VP (2010) Electroanalysis 22:325

    Article  CAS  Google Scholar 

  6. Dong H, Wang SH, Liu AH, Galligan JJ, Swain GM (2009) J Electroanal Chem 632:20

    Article  CAS  Google Scholar 

  7. Luczak T (2009) Electroanalysis 12:1539

    Article  Google Scholar 

  8. Seol H, Jeong H, Jeon S (2009) J Solid State Electrochem 13:1881

    Article  CAS  Google Scholar 

  9. Yao H, Li SG, Tang YH, Chen Y, Chen YZ, Lin XH (2009) Electrochim Acta 54:4607

    Article  CAS  Google Scholar 

  10. Yu ZY, Liu T, Guo DJ, Liu YJ, Liu CB (2010) J Mol Struct 984:402

    Article  CAS  Google Scholar 

  11. Snoek LC, Van Mourik T, Simons JP (2003) Mol Phys 101:1239

    Article  CAS  Google Scholar 

  12. van Mourik T (2004) Phys Chem Chem Phys 6:2827

    Article  Google Scholar 

  13. Alonso JL, Sanz ME, Lopez JC, Cortijo V (2009) J Am Chem Soc 131:4320

    Article  CAS  Google Scholar 

  14. Macleod NA, Simons JP (2006) Mol Phys 104:3317

    Article  CAS  Google Scholar 

  15. Huang ZG, Dai YM, Yu L, Wang HK (2011) J Mol Model 17:2609

    Article  CAS  Google Scholar 

  16. Benoit DM (2008) J Chem Phys 129:234304

    Article  Google Scholar 

  17. Miller TF, Clary DC (2006) J Phys Chem A 110:731

    Article  CAS  Google Scholar 

  18. Van Mourik T, Fruchtl HA (2005) Mol Phys 103:1641

    Article  Google Scholar 

  19. Alagona G, Ghio C (2002) Int J Quantum Chem 90:641

    Article  CAS  Google Scholar 

  20. Huang ZG, Dai YM, Yu L (2010) Struct Chem 21:863

    Article  CAS  Google Scholar 

  21. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Google Scholar 

  22. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  23. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  24. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  25. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian, Inc., Wallingford

  27. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  28. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  29. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  30. Rao L, Ke HW, Fu G, Xu X, Yan YJ (2009) J Chem Theory Comput 5:86

    Article  CAS  Google Scholar 

  31. Huang ZG, Dai YM, Wang HK, Yu L (2011) J Mol Model 17:2781

    Article  CAS  Google Scholar 

  32. Huang ZG, Yu L, Dai YM (2011) Int J Quantum Chem 111:3915

    CAS  Google Scholar 

  33. Huang ZG, Yu L, Dai YM, Wang HK (2011) Struct Chem 22:57

    Article  CAS  Google Scholar 

  34. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  35. Biegler-König F, Schönbohm J (2000) University of Applied Sciences, Bielefeld

  36. Yu ZY, Guo DJ, Wang HQ (2004) Chin J Chem Phys 17:149

    CAS  Google Scholar 

  37. Millefiori S, Raudino A, Zuccarello F (1980) Z Phys Chem Neue Folge 123:67

    Article  CAS  Google Scholar 

  38. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  39. Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878

    Article  CAS  Google Scholar 

  40. Miao R, Jin C, Yang GS, Hong J, Zhao CM, Zhu LG (2005) J Phys Chem A 109:2340

    Article  CAS  Google Scholar 

  41. Nozad AG, Meftah S, Ghasemi MH, Kiyani RA, Aghazadeh M (2009) Biophys Chem 141:49

    Article  CAS  Google Scholar 

  42. Parreira RLT, Valdes H, Galembeck SE (2006) Chem Phys 331:96

    Article  CAS  Google Scholar 

  43. Zhou HW, Lai WP, Zhang ZQ, Li WK, Cheung HY (2009) J Comput Aided Mol Des 23:153

    Article  CAS  Google Scholar 

  44. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  45. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  46. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

  47. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by Tianjin Science and Technology Development Fund Projects in Colleges and Universities (No. 20080504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Huang, Z., Shen, T. et al. Theoretical study on the hydrogen bonding interactions in 1:1 supermolecular complexes of noradrenaline with water. Struct Chem 23, 1163–1172 (2012). https://doi.org/10.1007/s11224-011-9940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9940-7

Keywords

Navigation