Skip to main content
Log in

Theoretical study of the ozonolysis of allyl acetate: mechanism and kinetics

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The potential energy surface (PES) and mechanism of the reaction of allyl acetate (AAC) with O3 are investigated by using density functional theory (DFT) and ab initio (MP2 and CCSD(T)) methods. The kinetics and main product branching ratios over the temperature range of (200–2,000 K) and at various pressures are obtained by employing multichannel Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The results show that the main products are 2-oxoethyl acetate and formaldehyde. Two channels are found for the decomposition of primary ozonides: one path is corresponding to the 2-oxoethyl acetate + CH2OO formation (R1); the other channel products formaldehyde + CH3C(O)OCH2CHOO (R2). In the whole temperature range, R1 is calculated to be preferable and its product yield accounts for 60–77% of the total while R2 is found to contribute 20–40% to the total product yield. The overall rate constants show pressure independence and strong positive temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graedel TE, Hawkins DT, Claxton LD (1986) Atmospheric chemical compounds: sources, occurrence, and bioassay. Academic Press, Orlando, FL

    Google Scholar 

  2. Ferrari C (1995) Ph. D., Universite′ Joseph Fourier-Grenoble 1

  3. Auerbach SS, Mahler J, Travlos GS, Irwin RD (2008) Toxicology 253:79–88

    Article  CAS  Google Scholar 

  4. Picquet-Varrault B, Doussin JF, Durand-Jolibois R, Pirali O, Carlier P (2002) Environ Sci Technol 36:4081–4086

    Article  CAS  Google Scholar 

  5. Calvé SL, Mellouki A, Bras GL, Treacy J, Wenger J, Sidebottom H (2000) J Atmos Chem 37:161–172

    Article  Google Scholar 

  6. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) Environ Sci Pollut Res 16:641–648

    Article  CAS  Google Scholar 

  7. Gonzalez C, Schlegel HBJ (1989) Chem Phys 90:2154–2161

    CAS  Google Scholar 

  8. Gonzalez C, Schlegel HBJ (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  9. Zhang D, Zhang R (2005) J Chem Phys 122:114308-1–114308-12

    Google Scholar 

  10. Zhang D, Zhang RJ (2002) Am Chem Soc 124:2692–2703

    Article  CAS  Google Scholar 

  11. Zhang D, Zhang RY, Park J, North SWJ (2002) Am Chem Soc 124:9600–9605

    Article  CAS  Google Scholar 

  12. Jiang L, Xu YS, Ding AZJ (2010) Phys Chem A 114:12452–12461

    Article  CAS  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Gill PWM, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Allaham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R Martin RL, Fox DJ Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzales C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Wallingford, CT

  14. Hou H, Wang BJ (2007) Chem Phys 127:054306

    Google Scholar 

  15. Wang F, Sun H, Sun J, Jia X, Zhang Y, Tang Y, Pan X, Su Z, Hao L, Wang RJ (2010) Phys Chem A 114:3516–3522

    Article  CAS  Google Scholar 

  16. Wang BS, Gu YS, Kong FNJ (1999) Phys Chem A 103:2060

    Article  CAS  Google Scholar 

  17. Hou H, Li AX, Hu HY, Li YZ, Li H, Wang BSJ (2005) Chem Phys 122:224304

    Google Scholar 

  18. IUPAC (2006) Subcommittee on gas kinetic data evaluation. http//www.iupac-kinetic.ch.cam.ac.uk

  19. Johnston HS, Heicklen JJ (1962) Phys Chem 66:532–533

    Article  Google Scholar 

  20. Stein SE, Rabinovitch BSJ (1973) Chem Phys 58:2438

    CAS  Google Scholar 

  21. Astholz DC, Troe J, Wieters WJ (1979) Chem Phys 70:5107

    CAS  Google Scholar 

  22. Troe JJ (1977) Chem Phys 66:4745

    CAS  Google Scholar 

  23. Long XP, He B, Jiang XH, Wu X (2003) Chin J High Press Phys 17:247–254

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Nature Science Foundation of China (NSFC Nos. 21077067, 20877049, 20737001). Independent Innovation Foundation of Shandong University (IIFSDU, project No. 2009JC016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtian Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Sun, Y., Cao, H. et al. Theoretical study of the ozonolysis of allyl acetate: mechanism and kinetics. Struct Chem 23, 201–208 (2012). https://doi.org/10.1007/s11224-011-9866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9866-0

Keywords

Navigation