Skip to main content
Log in

Insights into the reaction mechanism between propadienylidene and ethylene: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism between propadienylidene and ethylene has been systematically investigated employing the B3LYP/6-311++G** and MP2/cc-pVTZ levels of theory to better understand the reactivity of propadienylidene with unsaturated hydrocarbons. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Two important initial reaction complexes characterized by three- and four-membered ring structures have been located firstly. After that, three different products possessing three-, four-, and five-membered ring characters have been obtained through three reaction pathways. In the first reaction pathway, a three-membered ring alkyne compound has been obtained. As for the second reaction pathway, it is a diffusion-controlled reaction, resulting in the formation of the four-membered ring conjugated diene compound. A five-membered conjugated diene compound has been obtained in the third reaction pathway, which is the most stable product in the available products thermodynamically. On the other hand, the second reaction pathway is the most favorable reaction to proceed kinetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mitani M, Kobanashi Y, Koyama K (1995) J Chem Soc Perkin Trans I:653

    Article  Google Scholar 

  2. Garcia M, Campo CD, Llama EF (1993) Tetrahedron Lett 49:8433

    CAS  Google Scholar 

  3. Garcia M, Campo CD, Llama EF (1995) J Chem Soc Perkin Trans I:1771

    Article  Google Scholar 

  4. Kostikov RR, Khlebnikov AF, Bespalov VY (1993) J Phys Org Chem 6:83

    Article  CAS  Google Scholar 

  5. Wang Y, Li H (2004) Acta Phys-Chim Sin 20:1339

    CAS  Google Scholar 

  6. Stang PJ (1982) J Am Chem Res 15:348

    Article  CAS  Google Scholar 

  7. Lu XH, Wang YX (2003) J Phys Chem A 107:7885

    Article  CAS  Google Scholar 

  8. Lu XH, Wang YX (2004) J Mole Struct (THEOCHEM) 686:207

    Article  CAS  Google Scholar 

  9. Apeloig Y, Karni M, Stang PJ (1983) J Am Chem Soc 105:4781

    Article  CAS  Google Scholar 

  10. Fox DP, Stang PJ, Apeloig Y, Karni M (1986) J Am Chem Soc 108:750

    Article  CAS  Google Scholar 

  11. Tan XJ, Li P, Wang WH, Zheng GX, Yang XL (2009) Struct Chem 20:671

    Article  CAS  Google Scholar 

  12. Tan XJ, Li P, Wang WH, Zheng GX, Wang QF (2010) J Serb Chem Soc 75:649

    Article  CAS  Google Scholar 

  13. Herges R, Mebel A (1994) J Am Chem Soc 116:8229

    Article  CAS  Google Scholar 

  14. Maier G, Reisenauer HP, Schwab W, Carsky P, Hess BA, Schaad LJ (1987) J Am Chem Soc 109:5183

    Article  CAS  Google Scholar 

  15. Seburg RA, DePinto JT, Patterson EV, McMahon RJ (1995) J Am Chem Soc 117:835

    Article  CAS  Google Scholar 

  16. MacAllister T, Nicholson A (1981) J Chem Soc Faraday Trans 77:821

    Article  Google Scholar 

  17. Seburg RA, MacMahon R (1995) Angew Chem Int Ed Engl 34:2009

    Article  CAS  Google Scholar 

  18. Seburg RA, Patterson EV, Stanton JF, McMahon RJ (1997) J Am Chem Soc 119:5847

    Article  CAS  Google Scholar 

  19. Maier G, Reisenauer HP, Schwab W, Carsky P, Spirko V, Hess BA, Schaad LJ (1989) J Chem Phys 91:4763

    Article  CAS  Google Scholar 

  20. Juana V, Michael EH, Jurgen G, John FS (2009) J Phys Chem A 113:12447

    Article  Google Scholar 

  21. Taatjes CA, Klippenstein SJ, Hansen N, Miller JA, Cool TA, Wang J, Law ME, Westmoreland PR (2005) Phys Chem Chem Phys 7:806

    CAS  Google Scholar 

  22. Lau KC, Ng CY (2006) Chin J Chem Phys 19:29

    Article  CAS  Google Scholar 

  23. Gleiter R, Hoffmann R (1968) J Am Chem Soc 90:5457

    Article  CAS  Google Scholar 

  24. Shepard R, Banerjee A, Simons J (1979) J Am Chem Soc 101:6174

    Article  CAS  Google Scholar 

  25. Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107:137

    Article  CAS  Google Scholar 

  26. Montgomery JA, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900

    Article  CAS  Google Scholar 

  27. Hehre WJ, Pople JA, Lathan WA, Radom L, Wasserman E, Wasserman ZR (1976) J Am Chem Soc 98:4378

    Article  CAS  Google Scholar 

  28. Jonas V, Bohme M, Frenking G (1992) J Phys Chem 96:1640

    Article  CAS  Google Scholar 

  29. Takahashi J, Yamashita K (1996) J Chem Phys 104:6613

    Article  CAS  Google Scholar 

  30. Fan Q, Pfeiffer GV (1989) Chem Phys Lett 162:472

    Article  CAS  Google Scholar 

  31. Walch SP (1995) J Chem Phys 103:7064

    Article  CAS  Google Scholar 

  32. Kirmse W (1971) Carbene chemistry, 2nd edn. Academic Press, New York

    Google Scholar 

  33. Jones M, Moss RA (1973) Carbenes. Wiley, New York

    Google Scholar 

  34. Herbst E (1990) Angew Chem Int Ed Engl 29:595

    Article  Google Scholar 

  35. Herbst E, Leung LM (1989) Astrophys J Suppl Ser 69:271

    Article  CAS  Google Scholar 

  36. Winnewisser G (1981) Top Curr Chem 99:39

    CAS  Google Scholar 

  37. Hayatsu R, Anders E (1981) Top Curr Chem 99:1

    CAS  Google Scholar 

  38. Thaddeus P, Gottlieb CA, Mollaaghababa R, Vrtilek JM (1993) J Chem Soc Faraday Trans 89:2125

    Article  CAS  Google Scholar 

  39. Fabien G, Adam JT, Giovanni M, Talitha MS, David LO, Craig AT, Luc V, Stephen RL (2009) J Am Chem Soc 131:993

    Article  Google Scholar 

  40. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PM, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA(1998) Gaussian 98, revision A.9. Gaussian, Inc., Pittsburgh, PA

Download references

Acknowledgment

This work is supported by NSFC (21003082, 31070046), the Project of Shandong Province Higher Educational Science and Technology Program (J09LB01, J09LB17), and the Foundation for Outstanding Young Scientist in Shandong Province (BS2009HZ014, BS2010NJ009). We are also grateful to the reviewers for their insightful suggestions to improve the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Tan or Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Li, P., Wang, W. et al. Insights into the reaction mechanism between propadienylidene and ethylene: a DFT study. Struct Chem 22, 1031–1037 (2011). https://doi.org/10.1007/s11224-011-9798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9798-8

Keywords

Navigation