Skip to main content
Log in

Tyrosine alkyl esters as prodrug: the structure and intermolecular interactions of l-tyrosine methyl ester compared to l-tyrosine and its ethyl and n-butyl esters

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

l-Tyrosine alkyl esters are used as prodrugs for l-tyrosine. Although prodrugs are often designed for their behavior in solution, understanding their solid-state properties is the first step in mastering drug delivery. The crystal structure of l-tyrosine methyl ester has been determined and compared to published structures of l-tyrosine and its ethyl and n-butyl esters. It is almost isostructural with the other esters: it crystallizes in the orthorhombic chiral space group P212121, a = 5.7634(15) Å, b = 12.111(2) Å, c = 14.3713(19) Å, V = 1003.1(4) Å3 with Z′ = 1. Their main packing motif is a C(9) infinite hydrogen-bond chain, but the conformation of l-tyrosine methyl ester is different from the other two: eclipsed versus U-shaped, respectively. The published structure of the ethyl ester, which was incomplete, has been confirmed by X-ray powder diffraction data. Because l-tyrosine methyl ester is very stable (28 years stored at room temperature), and its hydrolysis rate is relatively low, it should be one of the better prodrugs among the alkyl esters of tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The absolute configuration of TME was considered l, since this was the configuration of the original tyrosine used for the synthesis.

References

  1. Oliyai R, Stella VJ (1993) Annu Rev Pharmacol Toxicol 32:521–544

    Article  Google Scholar 

  2. Mndzhoyan OL, Agadzhanyan TE, Fradkina NN, Avakyan OM, Noravyan OS (1971) Pharm Chem J 5:383–385

    Article  Google Scholar 

  3. Kawabata A, Kasamatsu K, Takagi H (1993) Eur J Pharmacol 233:255–260

    Article  CAS  Google Scholar 

  4. Steffansen B, Mørk N, Bundgaard H (1989) Acta Pharm Nord 2:47–56

    Google Scholar 

  5. Kumagai H, Echigo T, Hideyuki S, Tochikura T (1989) Agric Biol Chem 53:1429–1430

    CAS  Google Scholar 

  6. Carlsson PAE, Corrodi HR (1975) Aktiebolaget Hassle, Treatment of Parkinson’s disease. US Patent 19730820

  7. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzucka N, Mandel R, Björklung A (2002) J Neurosci 22:2780–2791

    CAS  Google Scholar 

  8. Roeske RW (1959) Chem Ind (London) 1121–1122

  9. Kahns AH, Buur A, Bundgaard H (1993) Pharm Res 10:68–74

    Article  CAS  Google Scholar 

  10. Huang CH, Kimura R, Bawarshi-Nassar R, Hussain A (1985) J Pharm Sci 74:1298

    Article  CAS  Google Scholar 

  11. Chien YW, Su KSE, Chang S-F (1989) Drugs Pharmaceut Sci 39:49–53

    Google Scholar 

  12. McDonald CE, Balls AK (1956) J Biol Chem 221:993–1003

    CAS  Google Scholar 

  13. Glazer AN (1966) J Biol Chem 241:635–638

    CAS  Google Scholar 

  14. Khawas B, Murti GSRK (1969) Acta Crystallogr Sect B 25:1006–1009

    Article  CAS  Google Scholar 

  15. Mostad A, Nissen HM, Romming C (1972) Acta Chem Scand 26:3819–3833

    Article  CAS  Google Scholar 

  16. Boggs R, Donohue J (1971) Acta Crystallogr Sect B 27:247

    Article  CAS  Google Scholar 

  17. Frey MN, Koezle TF, Lehmann MS, Hamilton WC (1973) J Chem Phys 58:2547

    Article  CAS  Google Scholar 

  18. Srinivasan R (1959) Proc Indian Acad Sci A 50:19–50

    Google Scholar 

  19. Srinivasan R (1959) Proc Indian Acad Sci A 49:340–373

    Google Scholar 

  20. Khawas B (1970) Acta Crystallogr Sect B 26:1919–1922

    Article  CAS  Google Scholar 

  21. Mostad A, Romming C (1973) Acta Chem Scand 27:401–410

    Article  CAS  Google Scholar 

  22. Mostad A, Nissen HM, Romming C (1971) Acta Chem Scand 25:1145

    Article  CAS  Google Scholar 

  23. Mostad A, Nissen HM, Romming C (1971) Tetrahedron Lett 2131

  24. Khawas B (1986) J Appl Crystallogr 19:410

    Article  CAS  Google Scholar 

  25. Leahey A, Olmstead MM (2001) Crystal structure of DL-tyrosine: CCDC 168369

  26. Pieret AF, Durant F, Griffé M, Germain G, Debaerdemaeker T (1970) Acta Crystallogr Sect B 26:2117

    Article  CAS  Google Scholar 

  27. Qian SH, Zhu HL, Tiekink ERT (2006) Acta Crystallogr Sect E 62:o882–o884

    Article  Google Scholar 

  28. Bryndal I, Jaremko M, Jaremko L, Lis T (2006) Acta Crystallogr Sect C 62:o111–o114

    Article  Google Scholar 

  29. Enraf Nonius (1994) CAD4 Express Software Enraf Nonius, Delft, The Netherlands

  30. Harms K, Wocadlo S (1995) XCAD-CAD4 Data reduction University of Marburg, Marburg

  31. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  Google Scholar 

  32. Spek AL (1990) Acta Crystallogr Sect A 46:C-34

    Google Scholar 

  33. Ballon J, Comparat V, Pouxe J (1983) Nucl Instrum Methods Phys Res Sect A 217:213–216

    Article  CAS  Google Scholar 

  34. Moggach SA, Allan DR, Parsons S, Sawyer (2006) Acta Crystallogr Sect B 62:310–320

    Article  Google Scholar 

  35. Fabbiani PA, Byrne LT, McKinnon JJ, Spackman MA (2007) CrystEngComm 9:728–731

    Article  CAS  Google Scholar 

  36. McKinnon JJ, Fabbiani FPA, Spackman MA (2007) Cryst Growth Des 7:755–769

    Article  CAS  Google Scholar 

  37. Braun DE, Gelbrich T, Kahlenberg V, Tessadri R, Wieser J, Griesser UJ (2009) J Pharm Sci 98:2010–2026

    Article  CAS  Google Scholar 

  38. Martins FT, Paparidis N, Doriguetto AC, Ellena J (2009) Cryst Growth Des 9:5283–5292

    Article  CAS  Google Scholar 

  39. Martins FT, Bocelli MD, Bonfilio R, de Araujo MB, de Lima PV, Neves PP, Veloso MP, Ellena J, Doriguetto AC (2009) Cryst Growth Des 9:3235–3244

    Article  CAS  Google Scholar 

  40. Braun DE, Gelbrich T, Kahlenberg V, Tessadri R, Wieser J, Griesser UJ (2009) Cryst Growth Des 9:1054–1065

    Article  CAS  Google Scholar 

  41. Bathori NB, Bourne SA (2009) J Chem Crystallogr 39:539–543

    Article  CAS  Google Scholar 

  42. McIldowie MJ, Gandy MN, Skelton BW, Brotchie JM, Koutsantonis GA, Spackman MA, Piggott MJ (2010) J Pharm Sci 99:234–245

    Article  CAS  Google Scholar 

  43. Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2007) Crystal Explorer 2.1 http://hirshfeldsurfacenet.blogspot.com/

  44. Jayatilaka D, Grimwood DJ, Lee A, Lemay A, Russel AJ, Taylor C, Wolff SK (2006) TONTO: a system for computational chemistry

  45. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  46. Spackman MA, McKinnon JJ, Jayatilaka D (2008) CrystEngComm 10:377–388

    CAS  Google Scholar 

  47. Spackman MA, McKinnon JJ (2002) CrystEngComm. 4:378–392

    Article  CAS  Google Scholar 

  48. Braun DE, Gelbrich T, Jetti RKR, Kahlenberg V, Price SL, Griesser UJ (2008) Cryst Growth Des 8:1977–1989

    Article  CAS  Google Scholar 

  49. Braun DE, Gelbrich T, Kahlenberg V, Laus G, Wieser J, Griesser UJ (2008) New J Chem 32:1677–1685

    Article  CAS  Google Scholar 

  50. Negrier P, Pardo LC, Salud J, Tamarit JL, Barrio M, Lopez DO, Wurflinger A, Mondieig D (2002) Chem Mater 14:1921

    Article  CAS  Google Scholar 

  51. Parat B, Pardo LC, Barrio M, Tamarit JL, Negrier P, Salud J, Lopez DO, Mondieig D (2005) Chem Mater 17:3359–3365

    Article  CAS  Google Scholar 

  52. Fortes AD, Wood IG, Knight KS (2008) Phys Chem Miner 35:207

    Article  CAS  Google Scholar 

  53. Negrier P, Barrio M, Tamarit JL, Veglio N, Mondieig D (2010) Cryst Growth Des 10:2793–2800

    Article  CAS  Google Scholar 

  54. Authier A (2003) International tables for Crystallography, D: physical properties of crystals, section 1.4, 1st edn. Wiley, London

    Google Scholar 

  55. Belousov RI, Filatov SK (2007) Glass Phys Chem 33:271–275

    Article  CAS  Google Scholar 

  56. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  57. Connolly ML (1983) J Appl Crystallogr 16:548–558

    Article  CAS  Google Scholar 

  58. Kitaigorodsky AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google Scholar 

  59. Mooibroek TJ, Gamez P, Reedijk J (2008) CrystEngComm 10:1501–1515

    Article  CAS  Google Scholar 

  60. Helluy X, Sebald A (2003) J Phys Chem B 107:3290–3296

    Article  CAS  Google Scholar 

  61. Kaminski W (2004) WinTensor (http://www.wintensor.com) version 1.1

Download references

Acknowledgments

The authors thank Philippe Bénas (Université Paris Descartes) and M. Marsal (Universitat Politècnica de Catalunya) for assistance with single-crystal X-ray diffraction data collection and SEM examinations, respectively. The authors thank the late Nestor Veglio for the powder diffraction data collection. Part of this study was supported by the Spanish grant FIS2008-00837 and by the Catalan government (2008SGR-1251). RC thanks the Generalitat de Catalunya (2007PIV00011) for an invited position at the Universitat Politècnica de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo B. Rietveld.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 80 kb)

Supplementary material 2 (ZIP 7043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolaï, B., Mahé, N., Céolin, R. et al. Tyrosine alkyl esters as prodrug: the structure and intermolecular interactions of l-tyrosine methyl ester compared to l-tyrosine and its ethyl and n-butyl esters. Struct Chem 22, 649–659 (2011). https://doi.org/10.1007/s11224-010-9723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9723-6

Keywords

Navigation