Skip to main content
Log in

Calculated ionization energies for a series of sesquiterpenes: comparisons with experimental vertical ionization energies and comments on related structure–activity relationships (SARs)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The energies of the highest-occupied molecular orbitals (HOMOs) are known to be excellent predictors of the reactivities of biogenic hydrocarbons, such as terpenes, with reactive atmospheric oxidants including O3, OH, and NO3. Structure–Activity Relationships (SARs) have also been effectively employed in such studies and related to HOMO energies and lowest ionization energies (ionization potentials). This study employs density function theory (DFT), at the B3LYP/6-31G** level, to predict vertical ionization energies (IPv) for a structurally diverse group of sesquiterpenes, each of which has been reported in air samples collected in the lower troposphere. The availability of published UV photoelectron spectra for nine sesquiterpenes permits comparison of experimental and theoretical vertical ionization energy data. The experimental and theoretical data show a good correlation (average discrepancy ± 0.07 eV). This enables predictions of reactivities for sesquiterpenes whose tropospheric lifetimes may last only a few hours before their transformations into secondary organic aerosols (SOA) close to their emission sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grosjean D, Williams EL, Grosjean E, Andino JM, Seinfeld JH (1993) Environ Sci Technol 27:2754

    Article  CAS  Google Scholar 

  2. Shu Y, Atkinson R (1994) Int J Chem Kin 26:1193

    Article  CAS  Google Scholar 

  3. Shu Y, Atkinson R (1995) J Geophys Res 100:7275

    Article  CAS  Google Scholar 

  4. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood G (2000) The Mechanisms of Atmospheric Oxidation of the Alkenes. Oxford University Press, Oxford

    Google Scholar 

  5. Bonn B, Moortgat GK (2003) Geophys Res Lett 30:39

    Article  CAS  Google Scholar 

  6. Joutsensaari J, Loivamäki M, Vuorinen T, Miettinen P, Nerg A-M, Holopainen JK, Laaksonen A (2005) Atmos Chem Phys 5:1489

    CAS  Google Scholar 

  7. Donahue NM, Huff Hartz KE, Chuong B, Presto AA, Stanier CO, Rosenhorn T, Robinson AL (2005) Faraday Discuss 130:295

    Article  CAS  Google Scholar 

  8. Lee A, Goldstein AH, Keywood MD, Gao S, Varutbangkul V, Bahreini R, Ng NL, Flagan RC, Seinfeld JH (2006) J. Geophys Res 111:DO7302

    Article  CAS  Google Scholar 

  9. Ng NL, Kroll JH, Keywood MD, Bahreini R, Varutbangkul V, Flagan RC, Seinfeld JH, Lee A, Goldstein AH (2006) Environ Sci Technol 40:2283

    Article  CAS  Google Scholar 

  10. Farmer DK, Cohen PC (2007) Atmos Chem Phys Discuss 7:2087

    Article  Google Scholar 

  11. Johnson D, Marston G (2008) Chem Soc Rev 37:699

    Article  CAS  Google Scholar 

  12. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:521

    CAS  Google Scholar 

  13. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:1329

    Article  CAS  Google Scholar 

  14. Atkinson R, Arey J (1994) Environ Health Perspect 102(Suppl. 4):117

    Article  CAS  Google Scholar 

  15. ISCA Technologies (2009) Pherobase. www.pherobase.com/database/floral-compoundsAccessed 9 Jan 2009

  16. McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Environ Sci Technol 34:2080

    Article  CAS  Google Scholar 

  17. Komenda M, Parusel E, Wedel A, Koppmann R (2001) Atmos Environ 35:2069

    Article  CAS  Google Scholar 

  18. Kubátová A, Vermeylen R, Claeys M, Cafmeyer J, Maenhaut W (2002) J Geophys Res 107:5

    Article  CAS  Google Scholar 

  19. Bahreini R, Keywood MD, Ng NL, Varutbangkul V, Gao S, Flagan RC, Seinfeld JH, Worsnop DR, Jimenez JL (2005) Environ Sci Technol 39:5674

    Article  CAS  Google Scholar 

  20. Helmig D, Ortega J, Duhl T, Tanner D, Guenther A, Harley P, Wiedinmyer C, Milford J, Sakulyanontvittaya T (2007) Environ Sci Technol 41:1545

    Article  CAS  Google Scholar 

  21. King MD, Canosa-Mas CE, Wayne RP (1999) Phys Chem Chem Phys 1:2231

    Article  CAS  Google Scholar 

  22. King MD, Canosa-Mas CE, Wayne RP (1999) Phys Chem Chem Phys 1:2239

    Article  CAS  Google Scholar 

  23. Peeters J, Boullart W, Pultau V, Vandenberk S, Vereecken L (2007) J Phys Chem A 111:1618

    Article  CAS  Google Scholar 

  24. Novak I, Kovač B, Kovačević G (2001) J Org Chem 66:4728

    Article  CAS  Google Scholar 

  25. Garcia GA, Nahon L, Powis I (2003) Int J Mass Spectrom 225:261

    Article  CAS  Google Scholar 

  26. Wavefunction, Inc (2006) Spartan ‘06 for Windows and Linux. Irvine, CA

    Google Scholar 

  27. Koopmans T (1934) Physica 1:134

    Article  Google Scholar 

  28. Hübner M, Rissom B, Fitjer L (1997) Helv Chim Acta 80:1972

    Article  Google Scholar 

  29. Clericuzio M, Alagona G, Ghio C, Toma L (2000) J Org Chem 65:6910

    Article  CAS  Google Scholar 

  30. Dev S, Anderson JE, Cormier V, Damodaran NP, Roberts JD (1968) J Amer Chem Soc 90:1246

    Article  CAS  Google Scholar 

  31. Shirahama H, Ōsawa E, Matsumoto T (1980) J Amer Chem Soc 102:3208

    Article  CAS  Google Scholar 

  32. Silva JMS, Vinhado FS, Mandelli D, Schuchardt U, Rinaldi R (2006) J Mol Catal A Chem 252:186

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Arthur Greenberg wishes to acknowledge the helpful discussions with Professors Barkley C. Sive (University of New Hampshire), and Robert J. Griffin (Rice University), which stimulated this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Greenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauduri, D., Greenberg, A. Calculated ionization energies for a series of sesquiterpenes: comparisons with experimental vertical ionization energies and comments on related structure–activity relationships (SARs). Struct Chem 20, 417–421 (2009). https://doi.org/10.1007/s11224-009-9431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9431-2

Keywords

Navigation