Skip to main content

New Techniques of Structure Elucidation for Sesquiterpenes

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 114

Abstract

The most significant new techniques that have been used in the twenty-first century for the structure elucidation of sesquiterpenes and some derivatives are reviewed in this chapter. A distinctive feature of these methodologies is the combination of accurate experimental measurements with theoretical data obtained by molecular modeling calculations that allow to visualize, understand, and quantify many structural characteristics. This has been the case for NMR spectroscopy, which has expanded its potential for solving complex structural problems by means of comparison with quantum mechanical molecular models. Ab initio and density functional theory calculations of chemical shifts, coupling constants, and residual chemical shift anisotropies have played important roles in the solution of many structures of sesquiterpenes. The assignments of their absolute configurations by evaluation of calculated and experimental chiroptical properties as electronic and vibrational circular dichroism are also reviewed. This chapter also includes the use of X-ray diffraction analysis with emphasis on calculations of the Flack and Hooft parameters, which are applicable to all molecules that crystallize in non-centrosymmetric space groups. The accurate molecular models of sesquiterpenes, validated by concordance with their experimental properties, are nowadays essential for the interpretation of the effects of these natural products on biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radulović NS, Mladenović MZ, Stojanović NM, Randjelović PJ, Blagojević PD (2019) Structural elucidation of presilphiperfolane-7α,8α-diol, a bioactive sesquiterpenoid from Pulicaria vulgaris: a combined approach of solvent-induced chemical shifts, GIAO calculation of chemical shifts, and full spin analysis. J Nat Prod 82:1874

    Google Scholar 

  2. MestreNova NMR Predict Desktop 9.0.0, Mestrelab Research. https://mestrelab.com/software/mnova-nmrpredict-desktop/

  3. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford, CT, USA

    Google Scholar 

  4. Benteldjoune M, Chini MG, Iannuzzi AM, Kabouche A, Kabouche Z, D’Ambola M, Marzocco S, Autore G, Bifulco G, De Tommasi N (2019) Guaianolides from Ormenis mixta: structural insights and evaluation of their anti-inflammatory profile. Planta Med 85:947

    Article  CAS  PubMed  Google Scholar 

  5. Bagno A, Rastrelli F, Saielli G (2006) Toward the complete prediction of the 1H and 13C NMR spectra of complex organic molecules by DFT methods: application to natural substances. Chem Eur J 12:5514

    Article  CAS  PubMed  Google Scholar 

  6. Dracinsky M, Budesinsky M, Warzajtis B, Rychlewska U (2012) Solution and solid-state effects on NMR chemical shifts in sesquiterpene lactones: NMR, X-ray, and theoretical methods. J Phys Chem A 116:680

    Article  CAS  PubMed  Google Scholar 

  7. Pickard CJ, Mauri F (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B 63:245101

    Article  CAS  Google Scholar 

  8. Fattorusso E, Luciano P, Romano A, Taglialatela-Scafati O, Appendino G, Borriello M, Fattorusso C (2008) Stereostructure assignment of medium-sized rings through an NMR-computational combined approach. Application to the new germacranes ketopelenolides C and D. J Nat Prod 71:1988

    Google Scholar 

  9. Wang J, Ren Q, Zhang YY, Guo R, Lin B, Huang XX, Song SJ (2019) Assignment of the stereostructures of sesquiterpenoids from the roots of Daphne genkwa via quantum chemical calculations. Fitoterapia 138:104352

    Article  CAS  PubMed  Google Scholar 

  10. Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526

    Article  CAS  PubMed  Google Scholar 

  11. Xia GY, Wang LY, Zhang JF, Wu YZ, Ge GB, Wang YN, Lin PC, Lin S (2020) Three new polyoxygenated bergamotanes from the endophytic fungus Penicillium purpurogenum IMM 003 and their inhibitory activity against pancreatic lipase. Chin J Nat Med 18:75

    PubMed  Google Scholar 

  12. Pierens GK (2014) 1H and 13C NMR scaling factors for the calculation of chemical shifts in commonly used solvents using density functional theory. J Comput Chem 35:1388

    Article  CAS  PubMed  Google Scholar 

  13. Ferreira de Albuquerque AC, Ribeiro DJ, de Amorim MB (2016) Structural determination of complex natural products by quantum mechanical calculations of 13C NMR chemical shifts: development of a parameterized protocol for terpenes. J Mol Model 22:183

    Article  CAS  Google Scholar 

  14. Galasso V, Kovac B, Modelli A (2007) A theoretical and experimental study on the molecular and electronic structures of artemisinin and related drug molecules. Chem Phys 335:141

    Article  CAS  Google Scholar 

  15. Kutateladze AG, Reddy DS (2017) High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to DFT-computed 13C NMR chemical shifts and spin–spin coupling constants. J Org Chem 82:3368

    Article  CAS  PubMed  Google Scholar 

  16. Schmiedel VM, Hong YJ, Lentz D, Tantillo DJ, Christmann M (2018) Synthesis and structure revision of dichrocephones A and B. Angew Chem Int Ed 57:2419

    Article  CAS  Google Scholar 

  17. Nguyen QNN, Tantillo DJ (2016) Using quantum chemical computations of NMR chemical shifts to assign relative configurations of terpenes from an engineered Streptomyces host. J Antibiot 69:534

    Article  CAS  Google Scholar 

  18. Grimblat N, Gavín JA, Hernández Daranas A, Sarotti AM (2019) Combining the power of J coupling and DP4 analysis on stereochemical assignments: the J-DP4 methods. Org Lett 21:4003

    Google Scholar 

  19. Fattorusso C, Stendardo E, Appendino G, Fattorusso E, Luciano P, Romano A, Taglialatela-Scafati O (2007) Artarborol, a nor-caryophyllane sesquiterpene alcohol from Artemisia arborescens. Stereostructure assignment through concurrence of NMR data and computational analysis. Org Lett 9:2377

    Google Scholar 

  20. Junior FMDS, Velozo LSM, de Carvalho EM, Marques AM, Borges RM, Trindade APF, dos Santos MIS, de Albuquerque ACF, Costa FLP, Kaplan MAC, de Amorim MB (2013) 3-Ishwarone, a rare ishwarane sesquiterpene from Peperomia scandens Ruiz & Pavon: structural elucidation through a joint experimental and theoretical study. Molecules 18:13520

    Article  PubMed  CAS  Google Scholar 

  21. Subramaniam G, Karimi S, Phillips D (2006) Solution conformation of longifolene and its precursor by NMR and ab initio calculations. Magn Reson Chem 44:1118

    Article  CAS  PubMed  Google Scholar 

  22. Koshino H, Satoh H, Yamada T, Esumi Y (2006) Structural revision of peribysins C and D. Tetrahedron Lett 47:4623

    Article  CAS  Google Scholar 

  23. Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R (2007) Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chem Rev 107:3744

    Article  CAS  PubMed  Google Scholar 

  24. Forsyth DA, Sebag AB (1997) Computed 13C NMR chemical shifts via empirically scaled GIAO shieldings and molecular mechanics geometries. Conformation and configuration from 13C shifts. J Am Chem Soc 119:9483

    Google Scholar 

  25. Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30:11

    Article  CAS  Google Scholar 

  26. Haasnoot CAG, de Leeuw FAAM, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities–I: an empirical generalization of the Karplus equation. Tetrahedron 36:2783

    Article  CAS  Google Scholar 

  27. Rusakova IL, Krivdin LB (2015) Karplus dependence of spin–spin coupling constants revisited theoretically. Part 1: second-order double perturbation theory. Phys Chem Chem Phys 15:18195

    Google Scholar 

  28. Reddy DS, Kutateladze AG (2016) Structure revision of an acorane sesquiterpene cordycepol A. Org Lett 18:4860

    Article  CAS  PubMed  Google Scholar 

  29. Cerda-García-Rojas CM, Coronel AC, de Lampasona MEP, Catalán CAN, Joseph-Nathan P (2005) Absolute configuration of lippifoliane and africanane derivatives. J Nat Prod 68:659

    Article  PubMed  CAS  Google Scholar 

  30. Hölte HD, Folkerts G (1996) Molecular modeling: basic principles and applications. In: Mannfold R, Kubinyi H, Timmermann H (eds) Methods and principles of medicinal chemistry, vol 5, VCH, Weinheim

    Google Scholar 

  31. Cerda-García-Rojas CM, Zepeda LG, Joseph-Nathan P (1990) A PC program for calculation of dihedral angles from 1H NMR data. Tetrahedron Comput Methodol 3:113

    Article  Google Scholar 

  32. Torres-Valencia JM, Meléndez-Rodríguez M, Álvarez-García R, Cerda-García-Rojas CM, Joseph-Nathan P (2004) DFT and NMR parameterized conformation of valeranone. Magn Reson Chem 42:898

    Article  CAS  PubMed  Google Scholar 

  33. Cerda-García-Rojas CM, Bucio MA, Román LU, Hernández JD, Joseph-Nathan P (2004) Preparation of moreliane-derived volatile sesquiterpenes. J Nat Prod 67:189

    Article  PubMed  CAS  Google Scholar 

  34. Cerda-García-Rojas CM, Guerra-Ramírez D, Román-Marín LU, Hernández-Hernández JD, Joseph-Nathan P (2006) DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester. J Mol Struct 789:37

    Article  CAS  Google Scholar 

  35. Molina JR, Finetti M, Díaz OJ, de la Fuente JR, Jubert A (2008) Vibrational and theoretical studies of a sesquiterpene lactone, 11αH-dihydrozaluzanin E. J Mol Struct 875:493

    Article  CAS  Google Scholar 

  36. Pérez-Hernández N, Gordillo-Román B, Arrieta-Báez D, Cerda-García-Rojas CM, Joseph-Nathan P (2017) Complete 1H NMR assignment of cedranolides. Magn Reson Chem 55:169

    Article  PubMed  CAS  Google Scholar 

  37. Phansalkar RS, Simmler C, Bisson J, Chen SN, Lankin DC, McAlpine JB, Niemitz M, Pauli GF (2017) Evolution of quantitative measures in NMR: quantum mechanical qHNMR advances chemical standardization of a red clover (Trifolium pratense) extract. J Nat Prod 80:634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gil RR, Gayathri C, Tsarevsky NV, Matyjaszewski K (2008) Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. Stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3J coupling constant analysis. J Org Chem 73:840

    Google Scholar 

  39. Castro SJ, García ME, Padrón JM, Navarro-Vázquez A, Gil RR, Nicotra VE (2018) Phytochemical study of Senecio volckmannii assisted by CASE-3D with residual dipolar couplings and isotropic 1H/13C NMR chemical shifts. J Nat Prod 81:2329

    Article  CAS  PubMed  Google Scholar 

  40. Wu Q, Ye F, Li XL, Liang LF, Sun J, Sun H, Guo YW, Wang H (2019) Uncommon polyoxygenated sesquiterpenoids from South China sea soft coral Lemnalia flava. J Org Chem 84:3083

    Article  CAS  PubMed  Google Scholar 

  41. Enthart A, Freudenberger JC, Furrer J, Kessler H, Luy B (2008) The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings. J Magn Reson 192:314

    Article  CAS  PubMed  Google Scholar 

  42. Navarro-Vázquez A (2012) MSpin-RDC. A program for the use of residual dipolar couplings for structure elucidation of small molecules. Magn Reson Chem 50:S73

    Google Scholar 

  43. Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer reagents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethyl-phenylacetate (MTPA) esters. J Am Chem Soc 95:512

    Google Scholar 

  44. Sullivan GR, Dale JA, Mosher HS (1973) Correlation of configuration and 19F chemical shifts of α-methoxy-α-trifluoromethylphenylacetate derivatives. J Org Chem 38:2143

    Article  CAS  Google Scholar 

  45. Su BN, Park EJ, Mbwambo ZH, Santarsiero BD, Mesecar AD, Fong HH, Pezzuto JM, Kinghorn AD (2002) New chemical constituents of Euphorbia quinquecostata and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J Nat Prod 65:1278

    Article  CAS  PubMed  Google Scholar 

  46. Catalán CAN, Cuenca MR, Hernández LR, Joseph-Nathan P (2003) cis,cis-Germacronolides and melampolides from Mikania thapsoides. J Nat Prod 66:949

    Article  PubMed  CAS  Google Scholar 

  47. Gu JQ, Wang Y, Franzblau SG, Montenegro G, Timmermann BN (2004) Constituents of Senecio chionophilus with potential antitubercular activity. J Nat Prod 67:1483

    Article  CAS  PubMed  Google Scholar 

  48. Fatope MO, Nair RS, Marwah RG, Al-Nadhiri HH (2004) New sesquiterpenes from Pluchea arabica. J Nat Prod 67:1925

    Article  CAS  PubMed  Google Scholar 

  49. Wang HB, Zhang HP, Zhou Y, Zuo JP, Qin GW (2005) Sesquiterpenoids from Saussurea laniceps. J Nat Prod 68:762

    Article  CAS  PubMed  Google Scholar 

  50. Arai T, Toda Y, Kato K, Miyamoto K, Hasegawa T, Yamada K, Shigemori H (2013) Artabolide, a novel polar auxin transport inhibitor isolated from Artemisia absinthium. Tetrahedron 69:7001

    Article  CAS  Google Scholar 

  51. Sribuhom T, Sriphana U, Thongsri Y, Yenjai C (2015) Chemical constituents from the stems of Alyxia schlechteri. Phytochem Lett 11:80

    Article  CAS  Google Scholar 

  52. Helaly SE, Richter C, Thongbai B, Hyde KD, Stadler M (2016) Lentinulactam, a hirsutane sesquiterpene with an unprecedented lactam modification. Tetrahedron Lett 57:5911

    Article  CAS  Google Scholar 

  53. Evans L, Hedger J, O’Donnell G, Skelton BW, White AH, Williamson RT, Gibbons S (2010) Structure elucidation of some highly unusual tricyclic cis-caryophyllane sesquiterpenes from Marasmiellus troyanus. Tetrahedron Lett 51:5493

    Article  CAS  Google Scholar 

  54. Huang XC, Li J, Li ZY, Shi L, Guo YW (2008) Sesquiterpenes from the Hainan sponge Dysidea septosa. J Nat Prod 71:1399

    Article  CAS  PubMed  Google Scholar 

  55. Diep CN, Lyakhova EG, Berdyshev DV, Kalinovsky AI, Tu VA, Cuong NX, Nam NH, Minh CV, Stonik VA (2015) Structures and absolute stereochemistry of guaiane sesquiterpenoids from the gorgonian Menella woodin. Tetrahedron Lett 56:7001

    Article  CAS  Google Scholar 

  56. Molinski TF (2010) Microscale methodology for structure elucidation of natural products. Curr Opin Biotechnol 21:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nord C, Menkis A, Broberg A (2015) Cytotoxic illudane sesquiterpenes from the fungus Granulobasidium vellereum (Ellis and Cragin) Jülich. J Nat Prod 78:2559

    Article  CAS  PubMed  Google Scholar 

  58. Tchinda AT, Tsala DE, Nga N, Cieckiewicz E, Kiss R, Connolly JD, Frédérich M (2014) Two new aromadendrane sesquiterpenes from the stem bark of Alafia multiflora. Nat Prod Commun 9:1673

    PubMed  Google Scholar 

  59. Grienke U, Brkanac SR, Vujčić V, Urban E, Ivanković S, Stojković R, Rollinger JM, Kralj J, Brozovic A, Stojković MR (2018) Biological activity of flavonoids and rare sesquiterpene lactones isolated from Centaurea ragusina L. Front Pharmacol 9:972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Polavarapu PL (2012) Determination of the structure of chiral natural products using vibrational circular dichroism. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW (eds) Comprehensive chiroptical spectroscopy. Applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules, vol 2, chapter 11. Wiley, Hoboken, NJ, USA, p 387

    Google Scholar 

  61. Joseph-Nathan P, Gordillo-Román B (2015) Vibrational circular dichroism absolute configuration determination of natural products. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 100. Springer International Publishing, Cham, Switzerland, p 311

    Google Scholar 

  62. Batista JM Jr (2013) Determination of absolute configuration using chiroptical methods. In: Andrushko V, Andrushko N (eds) Stereoselective synthesis of drugs and natural products, vol 2, chapter 53. Wiley, Hoboken, NJ, USA, p 1571

    Google Scholar 

  63. Batista Jr JM, da Silva Bolzani V (2014) Determination of the absolute configuration of natural product molecules using vibrational circular dichroism. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 41. Elsevier, Amsterdam, The Netherlands, p 311

    Google Scholar 

  64. Batista JM Jr, Blanch EW, da Silva BV (2015) Recent advances in the use of vibrational chiroptical spectroscopic methods for stereochemical characterization of natural products. Nat Prod Rep 32:1280

    Article  CAS  PubMed  Google Scholar 

  65. Kong LY, Wang P (2013) Determination of the absolute configuration of natural products. Chin J Nat Med 11:193

    Article  CAS  PubMed  Google Scholar 

  66. Santoro E, Mazzeo G, Petrovic AG, Cimmino A, Koshoubu J, Evidente A, Berova N, Superchi S (2015) Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies. Phytochemistry 116:359

    Article  CAS  PubMed  Google Scholar 

  67. Junior FM, Covington CL, de Albuquerque ACF, Lobo JF, Borges RM, de Amorim MB, Polavarapu PL (2015) Absolute configuration of (–)-centratherin, a sesquiterpenoid lactone, defined by means of chiroptical spectroscopy. J Nat Prod 78:2617

    Article  CAS  PubMed  Google Scholar 

  68. Ortega AR, Sánchez-Castellanos M, Pérez-Hernández N, Robles-Zepeda RE, Joseph-Nathan P, Quijano L (2016) Relative stereochemistry and absolute configuration of farinosin, a eudesmanolide from Encelia farinosa. Chirality 28:415

    Article  CAS  PubMed  Google Scholar 

  69. Matsuo Y, Maeda S, Ohba C, Fukaya H, Mimaki Y (2016) Vetiverianines A, B, and C: sesquiterpenoids from Vetiveria zizanioides roots. J Nat Prod 79:2175

    Article  CAS  PubMed  Google Scholar 

  70. Polavarapu PL, Covington CL, Raghavan V (2017) To avoid chasing incorrect chemical structures of chiral compounds: Raman optical activity and vibrational circular dichroism spectroscopies. ChemPhysChem 18:2459

    Article  CAS  PubMed  Google Scholar 

  71. San Feliciano A, Medarde M, Miguel del Corral JM, Aramburu A, Gordaliza M, Barrero AF (1989) Aquatolide. A new type of humulane-related sesquiterpene lactone. Tetrahedron Lett 30:2851

    Google Scholar 

  72. Lodewyk MW, Soldi C, Jones PB, Olmstead MM, Rita J, Shaw JT, Tantillo DJ (2012) The correct structure of aquatolide–experimental validation of a theoretically predicted structural revision. J Am Chem Soc 134:18550

    Article  CAS  PubMed  Google Scholar 

  73. Pauli GF, Niemitz M, Bisson J, Lodewyk MW, Soldi C, Shaw JT, Tantillo DJ, Saya JM, Vos K, Kleinnijenhuis RA, Hiemstra H, Chen SN, McAlpine JB, Lankin DC, Friesen JB (2016) Toward structural correctness: aquatolide and the importance of 1D proton NMR FID archiving. J Org Chem 81:878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Medina RP, Araujo AR, Batista JM, Cardoso CL, Seidl C, Vilela AFL, Domingos HV, Costa-Lotufo LV, Andersen RJ, Silva DHS (2019) Botryane terpenoids produced by Nemania bipapillata, an endophytic fungus isolated from red alga Asparagopsis taxiformis - Falkenbergia stage. Sci Rep 9:12318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lydon CA, Mathivathanan L, Sanchez J, dos Santos LAH, Sauvage T, Gunasekera SP, Paul VJ, Berry JP (2020) Eudesmacarbonate, a eudesmane-type sesquiterpene from a marine filamentous cyanobacterial mat (oscillatoriales) in the Florida Keys. J Nat Prod 83:2030

    Article  CAS  PubMed  Google Scholar 

  76. Li XC, Ferreira D, Ding Y (2010) Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool. Curr Org Chem 14:1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xi FM, Ma SG, Liu YB, Li L, Yu SS (2016) Artaboterpenoids A and B, bisabolene-derived sesquiterpenoids from Artabotrys hexapetalus. Org Lett 18:3374

    Article  CAS  PubMed  Google Scholar 

  78. Yu Y, Gao H, Dai Y, Xiao GK, Zhu HJ, Yao XS (2011) Guaiane-type sesquiterpenoid glucosides from Gardenia jasminoides Ellis. Magn Reson Chem 49:258

    Article  CAS  PubMed  Google Scholar 

  79. Ma SG, Li M, Lin MB, Li L, Liu YB, Qu J, Li Y, Wang XJ, Wang RB, Xu S, Hou Q, Yu SS (2017) Illisimonin A, a caged sesquiterpenoid with a tricyclo[5.2.1.01,6 decane skeleton from the fruits of Illicium simonsii. Org Lett 19:6160

    Google Scholar 

  80. Du Y, Pearce KC, Dai Y, Krai P, Dalal S, Cassera MB, Goetz M, Crawford TD, Kingston DGI (2017) Antiplasmodial sesquiterpenoid lactones from Trichospira verticillata: structure elucidation by spectroscopic methods and comparison of experimental and calculated ECD data. J Nat Prod 80:1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ren Y, Munoz Acuña U, Jiménez F, García R, Mejía M, Chai H, Gallucci JC, Farnsworth NR, Soejarto DD, Carcache de Blanco EJ, Kinghorn AD (2012) Cytotoxic and NF-κB inhibitory sesquiterpene lactones from Piptocoma rufescens. Tetrahedron 68:2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Inose K, Tanaka K, Yamada T, Koshino H, Hashimoto M (2019) Isolation of peribysins O, P, and Q from Periconia macrospinosa KT3863 and configurational reinvestigation of peribysin E diacetate from Periconia byssoides OUPS-N133. J Nat Prod 82:911

    Article  CAS  PubMed  Google Scholar 

  83. Reinhardt JK, Klemd AM, Danton O, De Mieri M, Smieško M, Huber R, Bürgi T, Gründemann C, Hamburger M (2019) Sesquiterpene lactones from Artemisia argyi: absolute configuration and immunosuppressant activity. J Nat Prod 82:1424

    Google Scholar 

  84. Zhou CX, Zhang LS, Chen FF, Wu HS, Mo JX, Gan LS (2017) Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells. Fitoterapia 121:141

    Article  CAS  PubMed  Google Scholar 

  85. Hassan Z, Hussain H, Ahmad VU, Anjum S, Pescitelli G, Kurtán T, Krohn K (2007) Absolute configuration of 1β,10β-epoxydesacetoxymatricarin isolated from Carthamus oxycantha by means of TDDFT CD calculations. Tetrahedron: Asymmetry 18:2905

    Google Scholar 

  86. Xia JH, Zhang SD, Li YL, Wu L, Zhu ZJ, Yang XW, Zeng HW, Li HL, Wang N, Steinmetz A, Zhang WD (2012) Sesquiterpenoids and triterpenoids from Abies holophylla and their bioactivities. Phytochemistry 74:178

    Article  CAS  PubMed  Google Scholar 

  87. Zhuang PY, Zhang GJ, Wang XJ, Zhang Y, Yu SS, Ma SG, Liu YB, Qu J, Li Y, Chen NH (2013) Novel sesquiterpenoid glycosides and sesquiterpenes from the roots of Illicium henryi. Planta Med 79:1453

    Article  CAS  PubMed  Google Scholar 

  88. Tabatabaei SM, Ebrahimi SN, Salehi P, Sonboli A, Tabefam M, Kaiser M, Hamburger M, Farimani MM (2019) Antiprotozoal germacranolide sesquiterpene lactones from Tanacetum sonbolii. Planta Med 85:424

    Article  CAS  Google Scholar 

  89. Yang HX, Ai HL, Feng T, Wang WX, Wu B, Zheng YS, Sun H, He J, Li ZH, Liu JK (2018) Trichothecrotocins A-C, antiphytopathogenic agents from potato endophytic fungus Trichothecium crotocinigenum. Org Lett 20:8069

    Article  CAS  PubMed  Google Scholar 

  90. Li HB, Yu Y, Wang ZZ, Yang J, Xiao W, Yao XS (2015) Two new sesquiterpenoids from Artemisia annua. Magn Reson Chem 53:244

    Article  CAS  PubMed  Google Scholar 

  91. Zhang C, Wang S, Zeng KW, Li J, Ferreira D, Zjawiony JK, Liu BY, Guo XY, Jin HW, Jiang Y, Tu PF (2016) Nitric oxide inhibitory dimeric sesquiterpenoids from Artemisia rupestris. J Nat Prod 79:213

    Article  CAS  PubMed  Google Scholar 

  92. Guo Y, Li M, Chen P, Wu Q, Gao C, Lu Y, Zhang L, Yuan D, Fu H (2017) A pair of new elemanolide sesquiterpene lactones from Elephantopus scaber L. Magn Reson Chem 55:677

    Article  CAS  PubMed  Google Scholar 

  93. Bodensieck A, Fabian WMF, Kunert O, Belaj F, Jahangir S, Schühly W, Bauer R (2010) Absolute configuration of eremophilane sesquiterpenes from Petasites hybridus: comparison of experimental and calculated circular dichroism spectra. Chirality 22:308

    CAS  PubMed  Google Scholar 

  94. Tian SH, Zhang C, Zeng KW, Zhao MB, Jiang Y, Tu PF (2018) Sesquiterpenoids from Artemisia vestita. Phytochemistry 147:194

    Article  CAS  PubMed  Google Scholar 

  95. Harada N, Iwabuchi J, Yokota Y, Uda H, Nakanishi K (1981) A chiroptical method for determining the absolute configuration of allylic alcohols. J Am Chem Soc 103:5590

    Article  CAS  Google Scholar 

  96. Berova N, Nakanishi K (2000) Exciton chirality method: principles and applications. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism: principles and applications. Wiley-VCH, New York, USA, p 337

    Google Scholar 

  97. Feng XL, Yu Y, Gao H, Mu ZQ, Cheng XR, Zhou WX, Yao XS (2014) New sesquiterpenoids from the rhizomes of Acorus tatarinowii. RSC Adv 4:42071

    Article  CAS  Google Scholar 

  98. Wang M, Zhang Q, Ren Q, Kong X, Wang L, Wang H, Xu J, Guo Y (2014) Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi. J Agric Food Chem 62:10945

    Article  CAS  PubMed  Google Scholar 

  99. Li RJ, Zhu RX, Zhao Y, Morris-Natschke SL, Chen CH, Wang S, Zhang JZ, Zhou JC, Lou HX, Lee KH (2014) Two new cadinane-type sesquiterpenes from the Chinese liverwort Frullania serrata. Nat Prod Res 28:1519

    Article  CAS  PubMed  Google Scholar 

  100. He XF, Zhang S, Zhu RX, Yang SP, Yuan T, Yue JM (2011) Sarcanolides A and B: two sesquiterpenoid dimers with a nonacyclic scaffold from Sarcandra hainanensis. Tetrahedron 67:3170

    Article  CAS  Google Scholar 

  101. Flack HD, Bernardinelli G (2008) The use of X-ray crystallography to determine absolute configuration. Chirality 20:681

    Article  CAS  PubMed  Google Scholar 

  102. Hooft RWW, Straver LH, Spek AL (2008) Determination of absolute structure using Bayesian statistics on Bijvoet differences. J Appl Cryst 41:96

    Article  CAS  Google Scholar 

  103. Fan WW, Xu FQ, Dong FW, Li XN, Wei XY, Zhou J, Hu JM (2013) Dendrowardols A and B, two new sesquiterpenoids from Dendrobium wardianum Warner. Tetrahedron Lett 54:1928

    Article  CAS  Google Scholar 

  104. Liu ML, Duan YH, Hou YL, Li C, Gao H, Dai Y, Yao XS (2013) Nardoaristolones A and B, two terpenoids with unusual skeletons from Nardostachys chinensis Batal. Org Lett 15:1000

    Article  CAS  PubMed  Google Scholar 

  105. Wibowo M, Levrier C, Sadowski MC, Nelson CC, Wang Q, Holst J, Healy PC, Hofmann A, Davis RA (2016) Bioactive dihydro-β-agarofuran sesquiterpenoids from the Australian rainforest plant Maytenus bilocularis. J Nat Prod 79:1445

    Article  CAS  PubMed  Google Scholar 

  106. Yu X, Zhang Q, Tian L, Guo Z, Liu C, Chen J, Zou K (2018) Germacrane-type sesquiterpenoids with antiproliferative activities from Eupatorium chinense. J Nat Prod 81:85

    Article  CAS  PubMed  Google Scholar 

  107. Lu Y, Han ZZ, Zhang CG, Ye Z, Wu LL, Xu H (2019) Four new sesquiterpenoids with anti-inflammatory activity from the stems of Jasminum officinale. Fitoterapia 135:22

    Article  CAS  PubMed  Google Scholar 

  108. Egas V, Toscano RA, Linares E, Bye R, Espinosa-García FJ, Delgado G (2015) Cadinane-type sesquiterpenoids from Heterotheca inuloides: absolute configuration and anti-inflammatory activity. J Nat Prod 78:2634

    Article  CAS  PubMed  Google Scholar 

  109. Wang CY, Kim D, Zhu YK, Oh DC, Huang RZ, Wang HS, Liang D, Lee SK (2019) Glechomanamides A-C, germacrane sesquiterpenoids with an unusual Δ8-7,12-lactam moiety from Salvia scapiformis and their antiangiogenic activity. J Nat Prod 82:3056

    Article  CAS  PubMed  Google Scholar 

  110. Bai B, Ye SX, Yang DP, Zhu LP, Tang GH, Chen YY, Zhao ZM (2019) Chloraserrtone A, a sesquiterpenoid dimer from Chloranthus serratus. J Nat Prod 82:407

    Article  CAS  PubMed  Google Scholar 

  111. Feng T, Li XM, He J, Ai HL, Chen HP, Li XN, Liu JK (2017) Nicotabin A, a sesquiterpenoid derivative from Nicotiana tabacum. Org Lett 19:5201

    Article  CAS  PubMed  Google Scholar 

  112. Shen XY, Qin DP, Zhou H, Luo JF, Yao YD, Lio CK, Li HB, Dai Y, Yu Y, Yao XS (2018) Nardochinoids A-C, three dimeric sesquiterpenoids with specific fused-ring skeletons from Nardostachys chinensis. Org Lett 20:5813

    Article  CAS  PubMed  Google Scholar 

  113. Zhang R, Tang C, Liu HC, Ren Y, Xu CH, Ke CQ, Yao S, Huang X, Ye Y (2018) Ainsliatriolides A and B, two guaianolide trimers from Ainsliaea fragrans and their cytotoxic activities. J Org Chem 83:14175

    Article  CAS  PubMed  Google Scholar 

  114. Fu ZZ, Han HT, Liu N, Xu XB, Zhu W, Gong MH, Tian JK (2015) Two new eudesmane sesquiterpenoids from Daucus carota L. Phytochem Lett 14:35

    Article  CAS  Google Scholar 

  115. Ortiz-León A, Torres-Valencia JM, Manríquez-Torres JJ, Alvarado-Rodríguez JG, Hernández-Balderas U, Cerda-García-Rojas CM, Joseph-Nathan P (2014) Diastereoselective addition of diazomethane to zaluzanin A. Nat Prod Commun 9:753

    PubMed  Google Scholar 

  116. Ortiz-León A, Torres-Valencia JM, Manríquez-Torres JJ, Alvarado-Rodríguez JG, Cerda-García-Rojas CM, Joseph-Nathan P (2017) The stereochemistry of the 1,3-dipolar cycloadditions of diazomethane to pseudoguaianolides. Tetrahedron: Asymmetry 28:367

    Google Scholar 

  117. Valdez-Calderón A, Torres-Valencia JM, Manríquez-Torres JJ, VelázquezJiménez R, Román-Marín LU, Hernández-Hernández JD, Cerda-García-Rojas CM, Joseph-Nathan P (2013) An unusual diepoxyguaianolide from Stevia tomentosa. Tetrahedron Lett 54:3286

    Article  CAS  Google Scholar 

  118. Rodríguez-García G, Villagómez-Guzmán AK, Talavera-Alemán A, Cruz-Corona R, Gómez-Hurtado MA, Cerda-García-Rojas CM, Joseph-Nathan P, del Río RE (2019) Conformational, configurational, and supramolecular studies of podocephalol acetate from Lasianthaea aurea. Chirality 31:923

    Article  PubMed  CAS  Google Scholar 

  119. Armenta-Salinas C, Guzmán-Mejía R, García-Gutiérrez HA, Roman-Marín LU, Hernández-Hernández JD, Cerda-García-Rojas CM, Joseph-Nathan P (2019) Novel sesquiterpene skeletons by multiple Wagner−Meerwein rearrangements of a longipinane-1,9-diol derivative. J Nat Prod 82:3410

    Article  CAS  PubMed  Google Scholar 

  120. Silva-García EM, Cerda-García-Rojas CM, del Río RE, Joseph-Nathan P (2019) Parvifoline derivatives as tubulin polymerization inhibitors. J Nat Prod 82:840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Conacyt-Mexico for financial support through grant CB 241053 and for a postdoctoral fellowship awarded to J.C.P.N. The authors wish to thank Dr. J. Martín Torres-Valencia, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico for kindly providing the plant photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Cerda-García-Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pardo-Novoa, J.C., Cerda-García-Rojas, C.M. (2021). New Techniques of Structure Elucidation for Sesquiterpenes. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 114. Progress in the Chemistry of Organic Natural Products, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-59444-2_3

Download citation

Publish with us

Policies and ethics