Skip to main content
Log in

DFT study of α-maltose: influence of hydroxyl orientations on the glycosidic bond

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The result of DFT geometry optimization of 68 unique α-maltose conformers at the B3LYP/6-311++G** level of theory is described. Particular attention is paid to the hydroxyl group rotational positions and their influence on the glycosidic bond dihedral angles. The orientation of lone pair electrons across the bridging hydrogen bonds are implicated in directing the glycosidic dihedral angles with for example, conformers gg-gg and gt-gt, having different minimum energy conformations for the clockwise (c) and the reverse clockwise (r) forms. Conformers tg-gg, gg-tg, tg-tg, gt-gg, and gg-gt were studied, to understand the intermediate glycosidic bond conformations. The conformation, tg-gg-c, was found to be the lowest energy structure. When the hydroxyl groups on each glucose residue were made to point in opposite directions, i.e., c/r and r/c, the optimized structures were found to have high relative energies. Several optimized ‘kink’ structures were found around (\(\phi_{\rm H}\), ψH) ∼(−40°, −40°), the lowest relative energy conformation being ∼3 kcal/mol. “Kink” conformations are observed in crystalline CA-10 and CA-14mers. Band-flip conformations, also observed in X-ray structures of CA-26 fragments, were studied with the lowest energy α-maltose conformations ∼4.0 kcal/mol above the global energy minimum. Several trends in geometry resulting from hydroxyl rotamer directions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Momany FA, Willett JLJ (2000) Comput Chem 21:1204

    Article  CAS  Google Scholar 

  2. Strati GL et al (2002) Carbohydr Res 337:1833

    Article  CAS  Google Scholar 

  3. Strati GL et al (2002) Carbohydr Res 337:1851

    Article  CAS  Google Scholar 

  4. Bosma WB et al (2006) J Mol Struct:THEOCHEM 776:1

    Article  CAS  Google Scholar 

  5. Bosma WB et al (2006) J Mol Struct:THEOCHEM 776:13

    Google Scholar 

  6. Appell M et al (2004) Carbohydr Res 339:537

    Article  CAS  Google Scholar 

  7. Momany FA et al (2006) Carbohydr Res 341:525

    Article  CAS  Google Scholar 

  8. Appell M et al (2005) Carbohydr Res 340:459

    Article  CAS  Google Scholar 

  9. Schnupf U et al (2007) Carbohydr Res 342:196

    Article  CAS  Google Scholar 

  10. Momany FA et al (2005) Carbohydr Res 340:1638

    Article  CAS  Google Scholar 

  11. Momany FA et al (2004) Carbohydr Res 339:553

    Article  CAS  Google Scholar 

  12. Umemura M et al (2005) J Mol Struct: THEOCHEM 730:1

    Article  CAS  Google Scholar 

  13. Lins RD, Hunenberger PH (2005) J Comput Chem 26:1400

    Article  CAS  Google Scholar 

  14. Kony D et al (2004) J Chem Phys B 108:5815

    Article  CAS  Google Scholar 

  15. Stortz CA, Cerezo AS (2003) Carbohydr Res 338:95

    Article  CAS  Google Scholar 

  16. Cheetham NWH et al (2003) Carbohydr Res 338:955

    Article  CAS  Google Scholar 

  17. Kuttel M et al (2002) J Comput Chem 23:1236

    Article  CAS  Google Scholar 

  18. Mendonca SJ et al (2002) Phys Chem A 106:4115

    Article  CAS  Google Scholar 

  19. Engelsen SB et al (2001) Biophys Chem 93:103

    Article  CAS  Google Scholar 

  20. French AD et al (2001) J Comput Chem 22:65

    Article  CAS  Google Scholar 

  21. Momany FA, Willett JL (2000) Carbohydr Res 326:194

    Article  CAS  Google Scholar 

  22. French AD et al (2000) J Mol Graph Model 18:95

    Article  CAS  Google Scholar 

  23. French AD et al (2000) J Mol Struct 556:303

    Article  CAS  Google Scholar 

  24. Spieser SAH et al (1999) Carbohydr Res 322:264

    Article  CAS  Google Scholar 

  25. Simmerling C et al (1998) J Amer Chem Soc 120:5771

    Article  CAS  Google Scholar 

  26. Damm W et al (1997) J Comput Chem 18:1955

    Article  CAS  Google Scholar 

  27. Sakurai M et al (1997) Bull Chem Soc Jpn 70:847

    Article  CAS  Google Scholar 

  28. Senderowitz H et al (1997) J Org Chem 62:1427

    Article  CAS  Google Scholar 

  29. Ott K-H, Meyer BJ (1996) Carbohydr Res 381:11; (1996) J Comput Chem 17:1068

    Google Scholar 

  30. Reiling S et al (1996) J Comput Chem 17:450

    Article  CAS  Google Scholar 

  31. Woods RJ et al (1995) J Phys Chem 99:3832

    Article  CAS  Google Scholar 

  32. Schmidt RK et al (1995) J Phys Chem 99:11339

    Article  CAS  Google Scholar 

  33. Fringant C et al (1995) Carbohydr Res 278:27

    Article  CAS  Google Scholar 

  34. Kouwijzer MLCE, Grootenhuis PDJ (1995) J Phys Chem 99:13426

    Article  Google Scholar 

  35. Glennon TM et al (1994) J Comput Chem 15:1019

    Article  CAS  Google Scholar 

  36. Brady JW, Schmidt RK (1993) J Phys Chem 97:958

    Article  CAS  Google Scholar 

  37. French AD, Dowd MK (1993) J Mol Struct: THEOCHEM 286:183

    Article  Google Scholar 

  38. Dowd MK et al (1992) Carbohydr Res 230:223

    Article  CAS  Google Scholar 

  39. French AD, Brady JW (1990) In: French AD, Brady JW (eds) Computer modeling of carbohydrate molecules, ACS Symposium Series 430. American Chemical Society, Washington, DC, p 1

    Google Scholar 

  40. Rasmussen K, Frabricius J (1990) In: French AD, Brady JW (eds) Computer modeling of carbohydrate molecules, ACS Symposium Series 430. American Chemical Society, Washington, DC, p 177

    Google Scholar 

  41. French AD (1989) Carbohydr Res 188:206

    Article  CAS  Google Scholar 

  42. Tran V et al (1989) Biopolymers 28:679

    Article  CAS  Google Scholar 

  43. Ha SN et al (1988) Carbohydr Res 180:207

    Article  CAS  Google Scholar 

  44. Ha SN et al (1988) Biopolymers 27:1927

    Article  CAS  Google Scholar 

  45. Koehler JEH et al (1987) Eur Biophys J 15:197

    Article  CAS  Google Scholar 

  46. Shaskov AS et al (1986) Carbohydr Res 147:175

    Article  Google Scholar 

  47. Tvaroska I, Perez S (1986) Carbohydr Res 149:389

    Article  CAS  Google Scholar 

  48. Lipkind GM et al (1984) Carbohydr Res 133:1

    Article  CAS  Google Scholar 

  49. Melberg S, Rasmussen K (1979) Carbohydr Res 69:27; (1980) Carbohydr Res 78:215

  50. Sugiyama H et al (2000) Carbohydr Res 325:177

    Article  CAS  Google Scholar 

  51. Shimada J et al (2000) J Phys Chem B 104:2136

    Article  CAS  Google Scholar 

  52. Pangborn W et al (1985) Int J Biol Macromol 7:363

    Article  CAS  Google Scholar 

  53. Taga T et al (1993) Carbohydr Res 240:39

    Article  CAS  Google Scholar 

  54. Taga T et al (1994) Carbohydr Res 251:203

    Article  CAS  Google Scholar 

  55. Jeffrey GA, Huang D (1991) Carbohydr Res 222:47

    Article  CAS  Google Scholar 

  56. Quigley GJ et al (1970) J Am Chem Soc 92:5834

    Article  CAS  Google Scholar 

  57. Gres SME, Jeffrey GA (1977) Acta Crystallogr B33:2490

    Article  Google Scholar 

  58. Takusagawa F, Jacobson RA (1978) Acta Crystallogr B34:213

    Article  CAS  Google Scholar 

  59. Chu SSC, Jeffrey GA (1967) Acta Crystallogr 23:1038

    Article  CAS  Google Scholar 

  60. Tanaka I et al (1976) Acta Crystallogr B32:155

    Article  CAS  Google Scholar 

  61. Imberty A, Perez S (1988) Carbohydr Res 181:41

    Article  CAS  Google Scholar 

  62. Brisse F et al (1982) J Am Chem Soc 104:7470

    Article  CAS  Google Scholar 

  63. Saenger W et al (1998) Chem Rev 98:1787

    Article  CAS  Google Scholar 

  64. Nimz O et al. (2001) Carbohydr Res 336:141

    Article  CAS  Google Scholar 

  65. Stevens ES, Sathyanarayana BK (1989) J Amer Chem Soc 111:4149

    Article  CAS  Google Scholar 

  66. Stevens ES (1992) Biopolymers 32:1571

    Article  CAS  Google Scholar 

  67. Insight/Discover, Molecular Simulations Inc, 9685 Scranton Road, San Diego, CA 92121-3752

  68. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  69. For the performance of B3LYP with a split valence basis set, see (a) Novoa JJ, Sosa CJ (1995) Phys Chem 99:15837; Sirois S et al (1997) J Chem Phys 107:6770; Paizs B, Suhai S (1998) J Comput Chem 19:575; Hagemeister FC et al (1998) J Phys Chem A 102:82

  70. PQS Ab Initio Program Package, Parallel Quantum Solutions, 2013 Green Acres, Suite E, Fayetteville, AR 72703, USA

  71. HyperChem 7.5, Hypercube, Inc, 115 NW 4th Street, Gainsville, FL 32601 USA

  72. Newton MD, Jeffrey GA, Takagi S (1979) J Amer Chem Soc 101:1997

    Article  CAS  Google Scholar 

  73. Suzuki T et al (2006) J Phys Chem B 110:2405

    Article  CAS  Google Scholar 

  74. Tvaroska I et al (2002) Carbohydr Res 337:353

    Article  CAS  Google Scholar 

  75. Dyekjaer JD, Rassmussen K (2003) Mini Rev Med Chem 3:713

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Momany.

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momany, F.A., Schnupf, U., Willett, J.L. et al. DFT study of α-maltose: influence of hydroxyl orientations on the glycosidic bond. Struct Chem 18, 611–632 (2007). https://doi.org/10.1007/s11224-007-9191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9191-9

Keywords

Navigation