Skip to main content
Log in

Coronal Quasi-periodic Fast-mode Propagating Wave Trains

  • Editors’ Choice / Invited Review
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Quasi-periodic, fast-mode propagating (QFP) wave trains in the corona have been studied intensively over the last decade, thanks to the full-disk, high spatio-temporal resolution, and wide-temperature coverage observations taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In the AIA observations, the QFP wave trains are seen to consist of multiple coherent and concentric wavefronts emanating successively near the epicenter of the accompanying flares. They propagate outwardly either along or across coronal loops at fast-mode magnetosonic speeds from several hundred to more than 2000 km s−1, and their periods are in the range of tens of seconds to several minutes. Based on the distinctly different properties of QFP wave trains, they might be divided into two distinct categories: narrow and broad ones. For most QFP wave trains, some of their periods are similar to those of the quasi-periodic pulsations (QPPs) in the accompanying flares, indicating that they are probably different manifestations of the same physical process. Currently, candidate generation mechanisms for QFP wave trains include two main categories: the pulsed energy excitation mechanism associated with magnetic reconnection and the dispersion-evolution mechanism related to the dispersive evolution of impulsively generated broadband perturbations. In addition, the generation of some QFP wave trains might be driven by the leakage of three- and five-minute oscillations from the lower atmosphere. As one of the discoveries of SDO, QFP wave trains provide a new tool for coronal seismology to probe the corona parameters, and they are also useful for diagnosing the generation of QPPs, flare processes including energy release, and particle acceleration. This review aims to summarize the main observational and theoretical results of spatially resolved QFP wave trains in extreme-ultraviolet observations and presents briefly a number of questions that deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within published articles listed in the references of the current study.

References

  • Arregui, I., Oliver, R., Ballester, J.L.: 2018, Prominence oscillations. Liv. Rev. Solar Phys. 15, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2004, The role of observed MHD oscillations and waves for coronal heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Coronal Heating SP-575, ESA, Noordwijk, 97. ADS.

    Google Scholar 

  • Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. Springer, Cham. ADS.

    Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bárta, M., Karlický, M., Žemlička, R.: 2008, Plasmoid dynamics in flare reconnection and the frequency drift of the drifting pulsating structure. Solar Phys. 253, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beckers, J.M., Tallant, P.E.: 1969, Chromospheric inhomogeneities in sunspot umbrae. Solar Phys. 7, 351. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogdan, T.J., Carlsson, M., Hansteen, V.H., McMurry, A., Rosenthal, C.S., Johnson, M., Petty-Powell, S., Zita, E.J., Stein, R.F., McIntosh, S.W., Nordlund, Å.: 2003, Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cai, Q., Shen, C., Raymond, J.C., Mei, Z., Warmuth, A., Roussev, I.I., Lin, J.: 2019, Investigations of a supra-arcade fan and termination shock above the top of the flare-loop system of the 2017 September 10 event. Mon. Not. Roy. Astron. Soc. 489, 3183. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron. Nachr. 331, 636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Casini, R., López Ariste, A., Tomczyk, S., Lites, B.W.: 2003, Magnetic maps of prominences from full Stokes analysis of the He I D3 line. Astrophys. J. Lett. 598, L67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K., Uddin, W.: 2016, Peculiar stationary EUV wave fronts in the eruption on 2011 May 11. Astrophys. J. 822, 106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Liv. Rev. Solar Phys. 8, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2016, Global coronal waves. In: Keiling, A., Lee, D.-H., Nakariakov, B. (eds.) Low-Frequency Waves in Space Plasmas, Geophys. Mono. Ser. 216, Am. Geophys. Union, Washinton, 381. DOI. ADS.

    Chapter  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Priest, E.R.: 2006, Transition-region explosive events: reconnection modulated by p-mode waves. Solar Phys. 238, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Fang, C., Chandra, R., Srivastava, A.K.: 2016, Can a fast-mode EUV wave generate a stationary front? Solar Phys. 291, 3195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, X., Yan, Y., Tan, B., Huang, J., Wang, W., Chen, L., Zhang, Y., Tan, C., Liu, D., Masuda, S.: 2019, Quasi-periodic pulsations before and during a solar flare in AR 12242. Astrophys. J. 878, 78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M.D., Liu, Y.: 2012, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Li, Y., Wan, L.F., Ding, M.D., Chen, P.F., Zhang, J., Liu, J.J.: 2018, Observations of turbulent magnetic reconnection within a solar current sheet. Astrophys. J. 866, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2006, Solar radio bursts with drifting stripes in emission and absorption. Space Sci. Rev. 127, 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2010, Recent results of zebra patterns in solar radio bursts. Res. Astron. Astrophys. 10, 821. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F., Peter, H., Malanushenko, A.: 2015, Thermal diagnostics with the atmospheric imaging assembly on board the solar dynamics observatory: a validated method for differential emission measure inversions. Astrophys. J. 807, 143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Clarke, B.P., Hayes, L.A., Gallagher, P.T., Maloney, S.A., Carley, E.P.: 2021, Quasi-periodic particle acceleration in a solar flare. Astrophys. J. 910, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cooper, F.C., Nakariakov, V.M., Williams, D.R.: 2003, Short period fast waves in solar coronal loops. Astron. Astrophys. 409, 325. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cowsik, R., Singh, J., Saxena, A.K., Srinivasan, R., Raveendran, A.V.: 1999, Short-period intensity oscillations in the solar corona observed during the total solar eclipse of 26 February 1998. Solar Phys. 188, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Craig, I.J.D., McClymont, A.N.: 1991, Dynamic magnetic reconnection at an X-type neutral point. Astrophys. J. Lett. 371, L41. DOI. ADS.

    Article  ADS  Google Scholar 

  • de La Noe, J., Boischot, A.: 1972, The type III B burst. Astron. Astrophys. 20, 55. ADS.

    ADS  Google Scholar 

  • De Moortel, I.: 2005, An overview of coronal seismology. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 363, 2743. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Nakariakov, V.M.: 2012, Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 370, 3193. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Hood, A.W., Walsh, R.W.: 2002, The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • DeForest, C.E.: 2004, High-frequency waves detected in the solar atmosphere. Astrophys. J. Lett. 617, L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: 2006, Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duan, Y., Shen, Y., Zhou, X., Tang, Z., Zhou, C., Tan, S.: 2022, Homologous accelerated electron beams and an euv wave train associated with a fan-spine jet. Astrophys. J. Lett. (accepted). arXiv.

  • Eto, S., Isobe, H., Narukage, N., Asai, A., Morimoto, T., Thompson, B., Yashiro, S., Wang, T., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Relation between a Moreton wave and an EIT wave observed on 1997 November 4. Publ. Astron. Soc. Japan 54, 481. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foullon, C., Verwichte, E., Nakariakov, V.M., Fletcher, L.: 2005, X-ray quasi-periodic pulsations in solar flares as magnetohydrodynamic oscillations. Astron. Astrophys. 440, L59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W.-Q., Zhu, C., Deng, Y.-Y., Li, H., Su, Y., Zhang, H.-Y., Chen, B., Zhang, Z., Wu, J., Deng, L., Huang, Y., Yang, J.-F., Cui, J.-J., Chang, J., Wang, C., Wu, J., Yin, Z.-S., Chen, W., Fang, C., Yan, Y.-H., Lin, J., Xiong, W.-M., Chen, B., Bao, H.-C., Cao, C.-X., Bai, Y.-P., Wang, T., Chen, B.-L., Li, X.-Y., Zhang, Y., Feng, L., Su, J.-T., Li, Y., Chen, W., Li, Y.-P., Su, Y.-N., Wu, H.-Y., Gu, M., Huang, L., Tang, X.-J.: 2019, Advanced Space-based Solar Observatory (ASO-S): an overview. Res. Astron. Astrophys. 19, 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, D.E., Hurford, G.J.: 1994, Coronal temperature, density, and magnetic field maps of a solar active region using the Owens Valley Solar Array. Astrophys. J. 420, 903. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goddard, C.R., Nakariakov, V.M., Pascoe, D.J.: 2019, Fast magnetoacoustic wave trains with time-dependent drivers. Astron. Astrophys. 624, L4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goddard, C.R., Nisticò, G., Nakariakov, V.M., Zimovets, I.V., White, S.M.: 2016, Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves. Astron. Astrophys. 594, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goode, P.R., Coulter, R., Gorceix, N., Yurchyshyn, V., Cao, W.: 2010, The NST: first results and some lessons for ATST and EST. Astron. Nachr. 331, 620. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gruszecki, M., Nakariakov, V.M., Van Doorsselaere, T.: 2012, Intensity variations associated with fast sausage modes. Astron. Astrophys. 543, A12. DOI. ADS.

    Article  Google Scholar 

  • Guidoni, S.E., DeVore, C.R., Karpen, J.T., Lynch, B.J.: 2016, Magnetic-island contraction and particle acceleration in simulated eruptive solar flares. Astrophys. J. 820, 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hayes, L.A., Inglis, A.R., Christe, S., Dennis, B., Gallagher, P.T.: 2020, Statistical study of GOES X-ray quasi-periodic pulsations in solar flares. Astrophys. J. 895, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hong, J., Yang, J., Chen, H., Bi, Y., Yang, B., Chen, H.: 2019, Observation of a reversal of breakout reconnection preceding a jet: evidence of oscillatory magnetic reconnection? Astrophys. J. 874, 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hyder, C.L.: 1966, Winking filaments and prominence and coronal magnetic fields. Z. Astrophys. 63, 78. ADS.

    ADS  Google Scholar 

  • Iwai, K., Tsuchiya, F., Morioka, A., Misawa, H.: 2012, IPRT/AMATERAS: a new metric spectrum observation system for solar radio bursts. Solar Phys. 277, 447. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jelínek, P., Karlický, M.: 2019, Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection. Astron. Astrophys. 625, A3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jelínek, P., Karlický, M., Murawski, K.: 2012, Magnetoacoustic waves in a vertical flare current-sheet in a gravitationally stratified solar atmosphere. Astron. Astrophys. 546, A49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jelínek, P., Karlický, M., Van Doorsselaere, T., Bárta, M.: 2017, Oscillations excited by plasmoids formed during magnetic reconnection in a vertical gravitationally stratified current sheet. Astrophys. J. 847, 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., De Moortel, I., Mathioudakis, M., Christian, D.J., Reardon, K.P., Keys, P.H., Keenan, F.P.: 2012, The source of 3 minute magnetoacoustic oscillations in coronal fans. Astrophys. J. 757, 160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Morton, R.J., Verth, G., Fedun, V., Grant, S.D.T., Giagkiozis, I.: 2015, Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190, 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiricka, K., Karlicky, M., Kepka, O., Tlamicha, A.: 1993, Fast drift burst observations with the new Ondřejov radiospectrograph. Solar Phys. 147, 203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kane, S.R., Kai, K., Kosugi, T., Enome, S., Landecker, P.B., McKenzie, D.L.: 1983, Acceleration and confinement of energetic particles in the 1980 June 7 solar flare. Astrophys. J. 271, 376. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaneda, K., Misawa, H., Iwai, K., Masuda, S., Tsuchiya, F., Katoh, Y., Obara, T.: 2018, Detection of propagating fast sausage waves through detailed analysis of a zebra-pattern fine structure in a solar radio burst. Astrophys. J. Lett. 855, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 2004, Series of high-frequency slowly drifting structures mapping the flare magnetic field reconnection. Astron. Astrophys. 417, 325. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 2013, Radio continua modulated by waves: zebra patterns in solar and pulsar radio spectra? Astron. Astrophys. 552, A90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Bárta, M.: 2007, Drifting pulsating structures generated during tearing and coalescence processes in a flare current sheet. Astron. Astrophys. 464, 735. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Jelínek, P., Mészárosová, H.: 2011, Magnetoacoustic waves in the narrowband dm-spikes sources. Astron. Astrophys. 529, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Mészárosová, H., Jelínek, P.: 2013, Radio fiber bursts and fast magnetoacoustic wave trains. Astron. Astrophys. 550, A1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kashapova, L.K., Kupriyanova, E.G., Xu, Z., Reid, H.A.S., Kolotkov, D.Y.: 2020, The origin of quasi-periodicities during circular ribbon flares. Astron. Astrophys. 642, A195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Katsiyannis, A.C., Williams, D.R., McAteer, R.T.J., Gallagher, P.T., Keenan, F.P., Murtagh, F.: 2003, Eclipse observations of high-frequency oscillations in active region coronal loops. Astron. Astrophys. 406, 709. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron. Astrophys. Suppl. Ser. 141, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715. ADS.

    ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Kontar, E.P.: 2018, Origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Moss, G., Shellard, P.: 2021, Fast magnetoacoustic wave trains: from tadpoles to boomerangs. Mon. Not. Roy. Astron. Soc. 505, 3505. DOI. ADS.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Zhugzhda, I.D., Locans, V.: 1983, Short period coronal oscillations – observation and interpretation. Astron. Astrophys. 120, 185. ADS.

    ADS  Google Scholar 

  • Kumar, P., Innes, D.E.: 2015, Partial reflection and trapping of a fast-mode wave in solar coronal arcade loops. Astrophys. J. Lett. 803, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Manoharan, P.K.: 2013, Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO. Astron. Astrophys. 553, A109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2016, Observation of a quasiperiodic pulsation in hard X-ray, radio, and extreme-ultraviolet wavelengths. Astrophys. J. 822, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Nakariakov, V.M., Cho, K.-S.: 2017, Quasi-periodic radio bursts associated with fast-mode waves near a magnetic null point. Astrophys. J. 844, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: 2010, Types of microwave quasi-periodic pulsations in single flaring loops. Solar Phys. 267, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kupriyanova, E., Kolotkov, D., Nakariakov, V., Kaufman, A.: 2020, Quasi-periodic pulsations in solar and stellar flares. Review. J. Solar-Terr. Phys. 6, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lazarian, A., Vishniac, E.T.: 1999, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D.: 2022, Quasi-periodic pulsations with double periods observed in ly\(\alpha\) emission during solar flares. Sci. China, Technol. Sci. 65, 139. DOI.

    Article  Google Scholar 

  • Li, Y., Lin, J.: 2012, Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points. Solar Phys. 279, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, Y., Wu, N., Lin, J.: 2017, Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field. Astron. Astrophys. 605, A120. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J., Yang, S., Liu, W.: 2012, SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures. Astrophys. J. 746, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L.P., Zhang, J., Su, J.T., Liu, Y.: 2016, Oscillation of current sheets in the wake of a flux rope eruption observed by the Solar Dynamics Observatory. Astrophys. J. Lett. 829, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, B., Guo, M.-Z., Yu, H., Chen, S.-X.: 2018a, Impulsively generated wave trains in coronal structures. II. Effects of transverse structuring on sausage waves in pressureless slabs. Astrophys. J. 855, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L., Zhang, J., Peter, H., Chitta, L.P., Su, J., Song, H., Xia, C., Hou, Y.: 2018b, Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops. Astrophys. J. Lett. 868, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, B., Antolin, P., Guo, M.-Z., Kuznetsov, A.A., Pascoe, D.J., Van Doorsselaere, T., Vasheghani Farahani, S.: 2020a, Magnetohydrodynamic fast sausage waves in the solar corona. Space Sci. Rev. 216, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Feng, S., Su, W., Huang, Y.: 2020c, Preflare very long-periodic pulsations observed in H\(\alpha\) emission before the onset of a solar flare. Astron. Astrophys. 639, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Kolotkov, D.Y., Nakariakov, V.M., Lu, L., Ning, Z.J.: 2020e, Quasi-periodic pulsations of gamma-ray emissions from a solar flare on 2017 September 6. Astrophys. J. 888, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Li, Y., Lu, L., Zhang, Q., Ning, Z., Anfinogentov, S.: 2020b, Observations of a quasi-periodic pulsation in the coronal loop and microwave flux during a solar preflare phase. Astrophys. J. Lett. 893, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Lu, L., Ning, Z., Feng, L., Gan, W., Li, H.: 2020d, Quasi-periodic pulsation detected in Ly\(\alpha\) emission during solar flares. Astrophys. J. 893, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Ge, M., Dominique, M., Zhao, H., Li, G., Li, X., Zhang, S., Lu, F., Gan, W., Ning, Z.: 2021b, Detection of flare multiperiodic pulsations in mid-ultraviolet Balmer continuum, Ly\(\alpha\), hard X-ray, and radio emissions simultaneously. Astrophys. J. 921, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Warmuth, A., Lu, L., Ning, Z.: 2021a, An investigation of flare emissions at multiple wavelengths. Res. Astron. Astrophys. 21, 066. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. Lett. 613, L177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, J., Murphy, N.A., Shen, C., Raymond, J.C., Reeves, K.K., Zhong, J., Wu, N., Li, Y.: 2015, Review on current sheets in CME development: theories and observations. Space Sci. Rev. 194, 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Linton, M.G., Longcope, D.W.: 2006, A model for patchy reconnection in three dimensions. Astrophys. J. 642, 1177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Chen, Q., Petrosian, V.: 2013, Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Lin, H.: 2008, Observational test of coronal magnetic field models. I. Comparison with potential field model. Astrophys. J. 680, 1496. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Nitta, N.V., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2010, First SDO AIA observations of a global coronal EUV “wave”: multiple components and “ripples”. Astrophys. J. Lett. 723, L53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Title, A.M., Zhao, J., Ofman, L., Schrijver, C.J., Aschwanden, M.J., De Pontieu, B., Tarbell, T.D.: 2011, Direct imaging of quasi-periodic fast propagating waves of ∼ 2000 km s−1 in the low solar corona by the Solar Dynamics Observatory Atmospheric Imaging Assembly. Astrophys. J. Lett. 736, L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., Lu, R.-W., Jin, Z.-Y., Chen, L.-F., Lou, K., Li, Z., Liu, G.-Q., Xu, Z., Rao, C.-H., Hu, Q.-Q., Li, R.-F., Fu, H.-W., Wang, F., Bao, M.-X., Wu, M.-C., Zhang, B.-R.: 2014, New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Ofman, L., Broder, B., Karlický, M., Downs, C.: 2016, Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs. In: Wang, L., Bruno, R., Möbius, E., Vourlidas, A. Zank, G. (eds.) Solar Wind 14, CS-1720, AIP, Melville NY, 040010. DOI. ADS.

    Chapter  Google Scholar 

  • Long, D.M., Bloomfield, D.S., Chen, P.F., Downs, C., Gallagher, P.T., Kwon, R.-Y., Vanninathan, K., Veronig, A.M., Vourlidas, A., Vršnak, B., Warmuth, A., Žic, T.: 2017b, Understanding the physical nature of coronal “EIT waves”. Solar Phys. 292, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Long, D.M., Murphy, P., Graham, G., Carley, E.P., Pérez-Suárez, D.: 2017a, A statistical analysis of the solar phenomena associated with global EUV waves. Solar Phys. 292, 185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lopin, I., Nagorny, I.: 2015, Sausage waves in transversely nonuniform monolithic coronal tubes. Astrophys. J. 810, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lopin, I., Nagorny, I.: 2017, Kink waves in thin stratified magnetically twisted flux tubes. Astrophys. J. 840, 26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lopin, I., Nagorny, I.: 2019, Dispersion of sausage waves in coronal waveguides with transverse density structuring. Mon. Not. Roy. Astron. Soc. 488, 660. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lu, L., Li, D., Ning, Z., Feng, L., Gan, W.: 2021, Quasi-periodic pulsations detected in ly \(\alpha\) and nonthermal emissions during solar flares. Solar Phys. 296, 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mann, G., Jansen, F., MacDowall, R.J., Kaiser, M.L., Stone, R.G.: 1999, A heliospheric density model and type III radio bursts. Astron. Astrophys. 348, 614. ADS.

    ADS  Google Scholar 

  • McKenzie, D.E., Savage, S.L.: 2009, Quantitative examination of supra-arcade downflows in eruptive solar flares. Astrophys. J. 697, 1569. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Thurgood, J.O., MacTaggart, D.: 2012, On the periodicity of oscillatory reconnection. Astron. Astrophys. 548, A98. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., De Moortel, I., Hood, A.W., Brady, C.S.: 2009, Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2D magnetic X-point: oscillatory reconnection. Astron. Astrophys. 493, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Verth, G., Fedun, V., Erdélyi, R.: 2012, Generation of quasi-periodic waves and flows in the solar atmosphere by oscillatory reconnection. Astrophys. J. 749, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelínek, P., Takasao, S.: 2018, Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci. Rev. 214, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mészárosová, H., Karlický, M., Rybák, J.: 2011, Magnetoacoustic wave trains in the 11 July 2005 radio event with fiber bursts. Solar Phys. 273, 393. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mészárosová, H., Karlický, M., Rybák, J., Jiřička, K.: 2009b, Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, L108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mészárosová, H., Sawant, H.S., Cecatto, J.R., Rybák, J., Karlický, M., Fernandes, F.C.R., de Andrade, M.C., Jiřička, K.: 2009a, Coronal fast wave trains of the decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare. Adv. Space Res. 43, 1479. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mészárosová, H., Dudík, J., Karlický, M., Madsen, F.R.H., Sawant, H.S.: 2013, Fast magnetoacoustic waves in a fan structure above a coronal magnetic null point. Solar Phys. 283, 473. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mészárosová, H., Karlický, M., Jelínek, P., Rybák, J.: 2014, Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra. Astrophys. J. 788, 44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miao, Y.H., Liu, Y., Shen, Y.D., Li, H.B., Abidin, Z.Z., Elmhamdi, A., Kordi, A.S.: 2019, A quasi-periodic propagating wave and extreme-ultraviolet waves excited simultaneously in a solar eruption event. Astrophys. J. Lett. 871, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miao, Y., Liu, Y., Elmhamdi, A., Kordi, A.S., Shen, Y.D., Al-Shammari, R., Al-Mosabeh, K., Jiang, C., Yuan, D.: 2020, Two quasi-periodic fast-propagating magnetosonic wave events observed in active region NOAA 11167. Astrophys. J. 889, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miao, Y., Li, D., Yuan, D., Jiang, C., Elmhamdi, A., Zhao, M., Anfinogentov, S.: 2021, Diagnosing a solar flaring core with bidirectional quasi-periodic fast propagating magnetoacoustic waves. Astrophys. J. Lett. 908, L37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Fleck, B., Ireland, J., Fletcher, L., Dennis, B.R.: 2017, Detection of three-minute oscillations in full-disk ly\(\alpha\) emission during a solar flare. Astrophys. J. Lett. 848, L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moreton, G.E.: 1960, H\(\alpha\) observations of flare-initiated disturbances with velocities ∼ 1000 km/sec. Astron. J. 65, 494. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Publ. Astron. Soc. Pac. 72, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Murawski, K., Aschwanden, M.J., Smith, J.M.: 1998, Impulsively generated MHD waves and their detectability in solar coronal loops. Solar Phys. 179, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murawski, K., Roberts, B.: 1993a, Numerical simulations of fast magnetohydrodynamic waves in a coronal plasma – part one. Solar Phys. 143, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murawski, K., Roberts, B.: 1993b, Numerical simulations of fast magnetohydrodynamic waves in a coronal plasma – part two. Solar Phys. 144, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murawski, K., Roberts, B.: 1993c, Numerical simulations of fast magnetohydrodynamic waves in a coronal plasma – part four. Solar Phys. 145, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murawski, K., Roberts, B.: 1994, Time signatures of impulsively generated waves in a coronal plasma. Solar Phys. 151, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L.: 2001, Determination of the coronal magnetic field by coronal loop oscillations. Astron. Astrophys. 372, L53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Pascoe, D.J., Arber, T.D.: 2005, Short quasi-periodic MHD waves in coronal structures. Space Sci. Rev. 121, 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Liv. Rev. Solar Phys. 2, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Arber, T.D., Ault, C.E., Katsiyannis, A.C., Williams, D.R., Keenan, F.P.: 2004, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. Roy. Astron. Soc. 349, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Foullon, C., Verwichte, E., Young, N.P.: 2006, Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop. Astron. Astrophys. 452, 343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Foullon, C., Myagkova, I.N., Inglis, A.R.: 2010, Quasi-periodic pulsations in the gamma-ray emission of a solar flare. Astrophys. J. Lett. 708, L47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Pilipenko, V., Heilig, B., Jelínek, P., Karlický, M., Klimushkin, D.Y., Kolotkov, D.Y., Lee, D.-H., Nisticò, G., Van Doorsselaere, T., Verth, G., Zimovets, I.V.: 2016, Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding. Space Sci. Rev. 200, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y., Kupriyanova, E.G., Mehta, T., Pugh, C.E., Lee, D.-H., Broomhall, A.-M.: 2019, Non-stationary quasi-periodic pulsations in solar and stellar flares. Plasma Phys. Control. Fusion 61, 014024. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Anfinogentov, S.A., Antolin, P., Jain, R., Kolotkov, D.Y., Kupriyanova, E.G., Li, D., Magyar, N., Nisticò, G., Pascoe, D.J., Srivastava, A.K., Terradas, J., Vasheghani Farahani, S., Verth, G., Yuan, D., Zimovets, I.V.: 2021, Kink oscillations of coronal loops. Space Sci. Rev. 217, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ni, L., Roussev, I.I., Lin, J., Ziegler, U.: 2012, Impact of temperature-dependent resistivity and thermal conduction on plasmoid instabilities in current sheets in the solar corona. Astrophys. J. 758, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ni, L., Kliem, B., Lin, J., Wu, N.: 2015, Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability. Astrophys. J. 799, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ni, L., Ji, H., Murphy, N.A., Jara-Almonte, J.: 2020, Magnetic reconnection in partially ionized plasmas. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 476, 20190867. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ning, Z.: 2014, Imaging observations of X-ray quasi-periodic oscillations at 3 – 6 keV in the 26 December 2002 solar flare. Solar Phys. 289, 1239. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nisticò, G., Pascoe, D.J., Nakariakov, V.M.: 2014, Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA. Astron. Astrophys. 569, A12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory – an ensemble study. Astrophys. J. 776, 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Liu, W.: 2018, Quasi-periodic counter-propagating fast magnetosonic wave trains from neighboring flares: SDO/AIA observations and 3D MHD modeling. Astrophys. J. 860, 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Sui, L.: 2006, Oscillations of hard X-ray flare emission observed by RHESSI: effects of super-Alfvénic beams? Astrophys. J. Lett. 644, L149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Romoli, M., Poletto, G., Noci, G., Kohl, J.L.: 1997, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, L111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Liu, W., Title, A., Aschwanden, M.: 2011, Modeling super-fast magnetosonic waves observed by SDO in active region funnels. Astrophys. J. Lett. 740, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Ruderman, M.S., Terradas, J.: 2014, Propagation and dispersion of transverse wave trains in magnetic flux tubes. Astrophys. J. 789, 48. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Ruderman, M.S., Terradas, J.: 2015, Propagation and dispersion of sausage wave trains in magnetic flux tubes. Astrophys. J. 806, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pant, V., Mazumder, R., Yuan, D., Banerjee, D., Srivastava, A.K., Shen, Y.: 2016, Simultaneous longitudinal and transverse oscillations in an active-region filament. Solar Phys. 291, 3303. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1988, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parks, G.K., Winckler, J.R.: 1969, Sixteen-second periodic pulsations observed in the correlated microwave and energetic X-ray emission from a solar flare. Astrophys. J. Lett. 155, L117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pasachoff, J.M., Landman, D.A.: 1984, High frequency coronal oscillations and coronal heating. Solar Phys. 90, 325. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pasachoff, J.M., Babcock, B.A., Russell, K.D., Seaton, D.B.: 2002, Short-period waves that heat the corona detected at the 1999 eclipse. Solar Phys. 207, 241. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pascoe, D.J., Goddard, C.R., Nakariakov, V.M.: 2017, Dispersive evolution of nonlinear fast magnetoacoustic wave trains. Astrophys. J. Lett. 847, L21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pascoe, D.J., Nakariakov, V.M., Kupriyanova, E.G.: 2013, Fast magnetoacoustic wave trains in magnetic funnels of the solar corona. Astron. Astrophys. 560, A97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pascoe, D.J., Nakariakov, V.M., Kupriyanova, E.G.: 2014, Fast magnetoacoustic wave trains in coronal holes. Astron. Astrophys. 568, A20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Kliem, B.: 2010, Toward understanding the early stages of an impulsively accelerated coronal mass ejection. SECCHI observations. Astron. Astrophys. 522, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Porter, L.J., Klimchuk, J.A., Sturrock, P.A.: 1994, The possible role of MHD waves in heating the solar corona. Astrophys. J. 435, 482. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, Kluwer, Dordrecht. ADS.

    Book  Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qu, Z.N., Jiang, L.Q., Chen, S.L.: 2017, Observations of a fast-mode magnetosonic wave propagating along a curving coronal loop on 2011 November 11. Astrophys. J. 851, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Sastry, C.V.: 2010, Estimation of magnetic field in the solar coronal streamers through low frequency radio observations. Astrophys. J. 711, 1029. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rast, M.P., Bello González, N., Bellot Rubio, L., Cao, W., Cauzzi, G., Deluca, E., de Pontieu, B., Fletcher, L., Gibson, S.E., Judge, P.G., Katsukawa, Y., Kazachenko, M.D., Khomenko, E., Landi, E., Martínez Pillet, V., Petrie, G.J.D., Qiu, J., Rachmeler, L.A., Rempel, M., Schmidt, W., Scullion, E., Sun, X., Welsch, B.T., Andretta, V., Antolin, P., Ayres, T.R., Balasubramaniam, K.S., Ballai, I., Berger, T.E., Bradshaw, S.J., Campbell, R.J., Carlsson, M., Casini, R., Centeno, R., Cranmer, S.R., Criscuoli, S., Deforest, C., Deng, Y., Erdélyi, R., Fedun, V., Fischer, C.E., González Manrique, S.J., Hahn, M., Harra, L., Henriques, V.M.J., Hurlburt, N.E., Jaeggli, S., Jafarzadeh, S., Jain, R., Jefferies, S.M., Keys, P.H., Kowalski, A.F., Kuckein, C., Kuhn, J.R., Kuridze, D., Liu, J., Liu, W., Longcope, D., Mathioudakis, M., McAteer, R.T.J., McIntosh, S.W., McKenzie, D.E., Miralles, M.P., Morton, R.J., Muglach, K., Nelson, C.J., Panesar, N.K., Parenti, S., Parnell, C.E., Poduval, B., Reardon, K.P., Reep, J.W., Schad, T.A., Schmit, D., Sharma, R., Socas-Navarro, H., Srivastava, A.K., Sterling, A.C., Suematsu, Y., Tarr, L.A., Tiwari, S., Tritschler, A., Verth, G., Vourlidas, A., Wang, H., Wang, Y.-M., NSO and DKIST Project, DKIST Instrument Scientists, DKIST Science Working Group, DKIST Critical Science Plan Community: 2021, Critical science plan for the Daniel K. Inouye Solar Telescope (DKIST). Solar Phys. 296, 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Polito, V., Chen, B., Galan, G., Yu, S., Liu, W., Li, G.: 2020, Hot plasma flows and oscillations in the loop-top region during the 2017 September 10 X8.2 solar flare. Astrophys. J. 905, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1983, Fast pulsations in the solar corona. Nature 305, 688. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B., Nakariakov, V.M.: 2003, Theory of MHD waves in the solar corona. In: Erdélyi, R., Petrovay, K., Roberts, B., Aschwanden, M. (eds.) Turbulence, Waves and Instabilities in the Solar Plasma, NATO Sci. Ser. II: Math. Phys. Chem. 124, Springer, Dordrecht, 167.

    Chapter  Google Scholar 

  • Sakurai, T., Ichimoto, K., Raju, K.P., Singh, J.: 2002, Spectroscopic observation of coronal waves. Solar Phys. 209, 265. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samanta, T., Singh, J., Sindhuja, G., Banerjee, D.: 2016, Detection of high-frequency oscillations and damping from multi-slit spectroscopic observations of the corona. Solar Phys. 291, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savage, S.L., McKenzie, D.E., Reeves, K.K.: 2012, Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Lett. 747, L40. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharykin, I.N., Kontar, E.P., Kuznetsov, A.A.: 2018, LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts. Solar Phys. 293, 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y.: 2021, Observation and modelling of solar jets. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 477, 217. DOI. ADS.

    Article  Google Scholar 

  • Shen, Y., Liu, Y.: 2012a, Evidence for the wave nature of an extreme ultraviolet wave observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Astrophys. J. 754, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.: 2012b, Observational study of the quasi-periodic fast-propagating magnetosonic waves and the associated flare on 2011 May 30. Astrophys. J. 753, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.: 2012c, Simultaneous observations of a large-scale wave event in the solar atmosphere: from photosphere to corona. Astrophys. J. Lett. 752, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Song, T., Liu, Y.: 2018, Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament. Mon. Not. Roy. Astron. Soc. 477, L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y.-D., Liu, Y., Su, J.-T., Li, H., Zhang, X.-F., Tian, Z.-J., Zhao, R.-J., Elmhamdi, A.: 2013a, Observations of a quasi-periodic, fast-propagating magnetosonic wave in multiple wavelengths and its interaction with other magnetic structures. Solar Phys. 288, 585. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Li, H., Zhao, R., Tian, Z., Ichimoto, K., Shibata, K.: 2013b, Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett. 773, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Ichimoto, K., Ishii, T.T., Tian, Z., Zhao, R., Shibata, K.: 2014a, A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave. Astrophys. J. 786, 151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.D., Chen, P.F., Ichimoto, K.: 2014b, Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave. Astrophys. J. 795, 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Tian, Z., Qu, Z.: 2017, On a small-scale EUV wave: the driving mechanism and the associated oscillating filament. Astrophys. J. 851, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Song, T., Tian, Z.: 2018a, A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope. Astrophys. J. 853, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Tang, Z., Li, H., Liu, Y.: 2018b, Coronal EUV, QFP, and kink waves simultaneously launched during the course of jet-loop interaction. Mon. Not. Roy. Astron. Soc. 480, L63. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Tang, Z., Miao, Y., Su, J., Liu, Y.: 2018c, EUV waves driven by the sudden expansion of transequatorial loops caused by coronal jets. Astrophys. J. Lett. 860, L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Chen, P.F., Liu, Y.D., Shibata, K., Tang, Z., Liu, Y.: 2019, First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock. Astrophys. J. 873, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y.D., Li, B., Chen, P.F., Zhou, X.P., Liu, Y.: 2020, Research progress on coronal extreme ultraviolet waves (in Chinese). Chin. Sci. Bull. 65, 3909. DOI.

    Article  Google Scholar 

  • Shen, Y., Zhou, X., Tang, Z., Duan, Y., Zhou, C., Tan, S.: 2022, Coronagraph white-light observation of a broad QFP wave train associated with a failed breakout eruption, in preparation.

  • Shestov, S., Nakariakov, V.M., Kuzin, S.: 2015, Fast magnetoacoustic wave trains of sausage symmetry in cylindrical waveguides of the solar corona. Astrophys. J. 814, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Liv. Rev. Solar Phys. 8, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Takasao, S.: 2016, Fractal reconnection in solar and stellar environments. In: Gonzalez, W., Parker, E. (eds.) Magnetic Reconnection: Concepts and Applications, Astrophys. Space Sci. Lib. 427, Springer, Cham, 373. DOI. ADS.

    Chapter  Google Scholar 

  • Shibata, K., Tanuma, S.: 2001, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473. DOI. ADS.

    Article  ADS  Google Scholar 

  • Singh, J., Cowsik, R., Raveendran, A.V., Bagare, S.P., Saxena, A.K., Sundararaman, K., Krishan, V., Naidu, N., Samson, J.P.A., Gabriel, F.: 1997, Detection of short-period coronal oscillations during the total solar eclipse of 24 October, 1995. Solar Phys. 170, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Subramanian, K.R., Ebenezer, E., Raveesha, K.H.: 2010, Coronal magnetic field estimation using type-II radio bursts. In: Hasan, S., Rutten, R. (eds.) Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophys. Space Sci. Lib. 19, Springer, Heidelberg, 482. DOI. ADS.

    Chapter  Google Scholar 

  • Sych, R., Nakariakov, V.M., Karlicky, M., Anfinogentov, S.: 2009, Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Takasao, S., Shibata, K.: 2016, Above-the-loop-top oscillation and quasi-periodic coronal wave generation in solar flares. Astrophys. J. 823, 150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.-P., Cyr, O.C.S., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, L151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thurgood, J.O., Pontin, D.I., McLaughlin, J.A.: 2017, Three-dimensional oscillatory magnetic reconnection. Astrophys. J. 844, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thurgood, J.O., Pontin, D.I., McLaughlin, J.A.: 2019, On the periodicity of linear and nonlinear oscillatory reconnection. Astron. Astrophys. 621, A106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Harra, L., Baker, D., Brooks, D.H., Xia, L.: 2021, Upflows in the upper solar atmosphere. Solar Phys. 296, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. ADS.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341. ADS.

    ADS  Google Scholar 

  • Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: an overview of recent results (invited review). Solar Phys. 291, 3143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., De Groof, A., Zender, J., Berghmans, D., Goossens, M.: 2011, LYRA observations of two oscillation modes in a single flare. Astrophys. J. 740, 90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Srivastava, A.K., Antolin, P., Magyar, N., Vasheghani Farahani, S., Tian, H., Kolotkov, D., Ofman, L., Guo, M., Arregui, I., De Moortel, I., Pascoe, D.: 2020, Coronal heating by MHD waves. Space Sci. Rev. 216, 140. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Nakariakov, V.M., Cooper, F.C.: 2005, Transverse waves in a post-flare supra-arcade. Astron. Astrophys. 430, L65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, C., Chen, F., Ding, M.: 2021, Exploring the nature of EUV waves in a radiative magnetohydrodynamic simulation. Astrophys. J. Lett. 911, L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhang, J.: 2007, A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. Astrophys. J. 665, 1428. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., Srivastava, A.K.: 2021, Slow-mode magnetoacoustic waves in coronal loops. Space Sci. Rev. 217, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Liv. Rev. Solar Phys. 12, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M., Kundu, M.R.: 1997, Radio observations of gyroresonance emission from coronal magnetic fields. Solar Phys. 174, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Williams, D.R., Phillips, K.J.H., Rudawy, P., Mathioudakis, M., Gallagher, P.T., O’Shea, E., Keenan, F.P., Read, P., Rompolt, B.: 2001, High-frequency oscillations in a solar active region coronal loop. Mon. Not. Roy. Astron. Soc. 326, 428. DOI. ADS.

    Article  ADS  Google Scholar 

  • Williams, D.R., Mathioudakis, M., Gallagher, P.T., Phillips, K.J.H., McAteer, R.T.J., Keenan, F.P., Rudawy, P., Katsiyannis, A.C.: 2002, An observational study of a magneto-acoustic wave in the solar corona. Mon. Not. Roy. Astron. Soc. 336, 747. DOI. ADS.

    Article  ADS  Google Scholar 

  • Withbroe, G.L., Noyes, R.W.: 1977, Mass and energy flow in the solar chromosphere and corona. Annu. Rev. Astron. Astrophys. 15, 363. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Soc. of Photo-Opt. Instrum. Eng. (SPIE) CS-5171, 111. DOI. ADS.

    Chapter  Google Scholar 

  • Xia, Q., Zharkova, V.: 2018, Particle acceleration in coalescent and squashed magnetic islands. I. Test particle approach. Astron. Astrophys. 620, A121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Jin, C., Yang, L., Wang, J., Li, Q., Zhao, L.: 2019, A small-scale oscillatory reconnection and the associated formation and disappearance of a solar flux rope. Astrophys. J. Lett. 874, L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, J., Su, Y., Li, H., Zhao, X.: 2020, Thermodynamical evolution of supra-arcade downflows. Astrophys. J. 898, 88. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, L., Zhang, J., Liu, W., Li, T., Shen, Y.: 2013, SDO/AIA and Hinode/EIS observations of interaction between an EUV wave and active region loops. Astrophys. J. 775, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, L., Zhang, L., He, J., Peter, H., Tu, C., Wang, L., Zhang, S., Feng, X.: 2015, Numerical simulation of fast-mode magnetosonic waves excited by plasmoid ejections in the solar corona. Astrophys. J. 800, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Young, C.W., Spencer, C.L., Moreton, G.E., Roberts, J.A.: 1961, A preliminary study of the dynamic spectra of solar radio bursts in the frequency range 500 – 950 Mc/s. Astrophys. J. 133, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, S., Chen, B.: 2019, Possible detection of subsecond-period propagating magnetohydrodynamics waves in post-reconnection magnetic loops during a two-ribbon solar flare. Astrophys. J. 872, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, H., Li, B., Chen, S.-X., Guo, M.-Z.: 2015, Kink and sausage modes in nonuniform magnetic slabs with continuous transverse density distributions. Astrophys. J. 814, 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, H., Li, B., Chen, S.-X., Xiong, M., Guo, M.-Z.: 2016, Impulsively generated sausage waves in coronal tubes with transversally continuous structuring. Astrophys. J. 833, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, H., Li, B., Chen, S.-X., Xiong, M., Guo, M.-Z.: 2017, Impulsively generated wave trains in coronal structures. I. Effects of transverse structuring on sausage waves in pressureless tubes. Astrophys. J. 836, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Li, B., Walsh, R.W.: 2016, Secondary fast magnetoacoustic waves trapped in randomly structured plasmas. Astrophys. J. 828, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Shen, Y., Liu, Y., Nakariakov, V.M., Tan, B., Huang, J.: 2013, Distinct propagating fast wave trains associated with flaring energy releases. Astron. Astrophys. 554, A144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Pascoe, D.J., Nakariakov, V.M., Li, B., Keppens, R.: 2015, Evolution of fast magnetoacoustic pulses in randomly structured coronal plasmas. Astrophys. J. 799, 221. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Feng, S., Li, D., Ning, Z., Tan, B.: 2019, A compact source for quasi-periodic pulsation in an M-class solar flare. Astrophys. J. Lett. 886, L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Ji, H.S.: 2018, Vertical oscillation of a coronal cavity triggered by an EUV wave. Astrophys. J. 860, 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Li, D., Ning, Z.J.: 2016, Chromospheric condensation and quasi-periodic pulsations in a circular-ribbon flare. Astrophys. J. 832, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Y., Zhang, J., Wang, J., Nakariakov, V.M.: 2015, Coexisting fast and slow propagating waves of the extreme-UV intensity in solar coronal plasma structures. Astron. Astrophys. 581, A78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, X., Hoeksema, J.T.: 1994, A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys. 151, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, C., Shen, Y., Zhou, X., Tang, Z., Duan, Y., Tan, S.: 2021a, Sympathetic filament eruptions within a fan-spine magnetic system. Astrophys. J. 923, 45. DOI.

    Article  ADS  Google Scholar 

  • Zhou, X., Shen, Y., Su, J., Tang, Z., Zhou, C., Duan, Y., Tan, S.: 2021b, CME-driven and flare-ignited fast magnetosonic waves detected in a solar eruption. Solar Phys. 296, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, X., Shen, Y., Tang, Z., Zhou, C., Duan, Y., Tang, S.: 2021c, Total reflection of a flare-driven quasi-periodic EUV wave train at a coronal hole boundary. arXiv. ADS.

  • Zhou, X., Shen, Y., Hu, H., Liu, Y.D., Su, J., Tang, Z., Zhou, C., Duan, Y.: 2022, Observations of a quasi-periodic large-scale EUV wave driven by flare pressure pulses. Astrophys. J. Lett. (submitted).

  • Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., Kolotkov, D.Y., Kuznetsov, A.A., Kupriyanova, E.G., Cho, I.-H., Inglis, A.R., Reale, F., Pascoe, D.J., Tian, H., Yuan, D., Li, D., Zhang, Q.M.: 2021, Quasi-periodic pulsations in solar and stellar flares: a review of underpinning physical mechanisms and their predicted observational signatures. Space Sci. Rev. 217, 66. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zong, W., Dai, Y.: 2017, Mode conversion of a solar extreme-ultraviolet wave over a coronal cavity. Astrophys. J. Lett. 834, L15. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The present review is based on the invited talk by Y. Shen at the international workshop “MHD Coronal Seismology 2020: Twenty Years of Probing the Sun’s Corona with MHD Waves” organized by D. Kolotkov, B. Li, S. Anfinogentov, K. Murawski, G. Nistico, D. Tsiklauri, and T. Van Doorsselaere in 2020. The authors would like to thank the organizers and the Guest Editors (D. Kolotkov and B. Li) for this Topical Collection. Data Courtesy of NASA/SDO and the AIA, science team.

Funding

This work is supported by the Natural Science Foundation of China (12173083, 11922307, 11773068, 11633008), the Yunnan Science Foundation for Distinguished Young Scholars (202101AV070004), the Yunnan Science Foundation (2017FB006), the National Key R&D Program of China (2019YFA0405000), the Specialized Research Fund for State Key Laboratories, and the West Light Foundation of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuandeng Shen.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhou, X., Duan, Y. et al. Coronal Quasi-periodic Fast-mode Propagating Wave Trains. Sol Phys 297, 20 (2022). https://doi.org/10.1007/s11207-022-01953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01953-2

Keywords

Navigation