Skip to main content
Log in

Short Quasi-Periodic MHD Waves in Coronal Structures

  • Session II: Plasma Physics of the Solar Atmosphere
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The possibility of remote diagnostics of coronal structures with impulsively-generated short-period fast magnetoacoustic wave trains is demonstrated. An initially broad-band, aperiodic fast magnetoacoustic perturbation guided by a 1D plasma inhomogeneity develops into a quasi-periodic wave train with a well-pronounced frequency and amplitude modulation. The quasi-periodicity results from the geometrical dispersion of the modes, determined by the transverse profile of the loop, and hence contains information about the profile. Wavelet images of the wave train demonstrate that their typical spectral signature is of a “crazy tadpole’’ shape: a narrow spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time, with a mean value of several seconds for typical coronal values. The period and the spectral amplitude evolution are determined by the steepness of the transverse density profile and the density contrast ratio in the loop, which offers a tool for estimation of the sub-resolution structuring of the corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Nakariakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakariakov, V.M., Pascoe, D.J. & Arber, T.D. Short Quasi-Periodic MHD Waves in Coronal Structures. Space Sci Rev 121, 115–125 (2005). https://doi.org/10.1007/s11214-006-4718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-4718-8

Keywords

Navigation