Skip to main content
Log in

Re-analysis of Lepping’s Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded

  • Editors’ Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Magnetic clouds (MCs) are a subset of ejecta, launched from the Sun as coronal mass ejections. The coherent rotation of the magnetic field vector observed in MCs leads to envision MCs as formed by flux ropes (FRs). Among all the methods used to analyze MCs, Lepping’s method (Lepping, Burlaga, and Jones in J. Geophys. Res.95, 11957, 1990) is the broadest used. While this fitting method does not require the axial field component to vanish at the MC boundaries, this idea is largely spread in publications. We revisit Lepping’s method to emphasize its hypothesis and the meaning of its output parameters. As originally defined, these parameters imply a fitted FR which could be smaller or larger than the studied MC. We rather provide a re-interpretation of Lepping’s results with a fitted model limited to the observed MC interval. We find that typically the crossed FRs are asymmetric with a larger side both in size and magnetic flux before or after the FR axis. At the boundary of the largest side we find an axial magnetic field component distributed around zero which we justify by the physics of solar eruptions. In contrast, at the boundary of the smaller side the axial field distribution is shifted to positive values, as expected with erosion acting during the interplanetary travel. This new analysis of Lepping’s results has several implications. First, global quantities, such as magnetic fluxes and helicity, need to be revised depending on the aim (estimating global properties of FRs just after the solar launch or at 1 au). Second, the deduced twist profiles in MCs range quasi-continuously from nearly uniform, to increasing away from the FR axis, up to a reversal near the MC boundaries. There is no trace of outsider cases, but a continuum of cases. Finally, the impact parameter of the remaining FR crossed at 1 au is revised. Its distribution is compatible with weakly flattened FR cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys.284, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Asai, A., Ishii, T.T., Kurokawa, H., Yokoyama, T., Shimojo, M.: 2003, Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J.586, 624. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys.543, A110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 2003, In: Ferriz-Mas, A., Núñez, M. (eds.) Topological Quantities in Magnetohydrodynamics, 345. DOI . ADS .

    Chapter  MATH  Google Scholar 

  • Burlaga, L.F.: 1995, Interplanetary magnetohydrodynamics. In: Interplanetary Magnetohydrodynamics3. ADS .

    Google Scholar 

  • Burlaga, L.F., Behannon, K.W.: 1982, Magnetic clouds – Voyager observations between 2 and 4 AU. Solar Phys.81, 181. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., Larson, D.E.: 1998, A magnetic cloud containing prominence material – January 1997. J. Geophys. Res.103, 277. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S., Lim, E.-K.: 2013, Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Phys.284(1), 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res.108, 1362. DOI . ADS .

    Article  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M.: 2005a, Large scale MHD properties of interplanetary magnetic clouds. Adv. Space Res.35, 711. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Gulisano, A.M., Démoulin, P.: 2005b, A direct method to estimate magnetic helicity in magnetic clouds. In: Dere, K., Wang, J., Yan, Y. (eds.) Coronal and Stellar Mass Ejections, IAU Symposium226, 403. DOI . ADS .

    Chapter  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys.455, 349. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys.244, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys.498, 551. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P., Dasso, S., Janvier, M.: 2013, Does spacecraft trajectory strongly affect detection of magnetic clouds? Astron. Astrophys.550, A3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys.250, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., Fitzenreiter, R.J., Steinberg, J.T., Lazarus, A.J., Lin, R.P., Larson, D., Dasso, S., Gratton, F.T., Lin, Y., Berdichevsky, D.: 1999, A uniform-twist magnetic flux rope in the solar wind. In: Habbal, S.R., Esser, R., Hollweg, J.V., Isenberg, P.A. (eds.) American Institute of Physics Conference Series471, 745. DOI . ADS .

    Chapter  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc.120, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: NASA Conference Publication, 228. 0.731. ADS .

    Google Scholar 

  • Good, S.W., Kilpua, E.K.J., LaMoury, A.T., Forsyth, R.J., Eastwood, J.P., Möstl, C.: 2019, Self-similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner heliosphere. J. Geophys. Res.124(7), 4960. DOI . ADS .

    Article  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys.292, 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H.: 2018, Coronal flux ropes and their interplanetary counterparts. J. Atmos. Solar-Terr. Phys.180, 35. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space, Washington DC American Geophysical Union Geophysical Monograph Series58, 343. DOI . ADS .

    Book  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Global and local expansion of magnetic clouds in the inner heliosphere. Astron. Astrophys.509, A39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett.29, 1637. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res.120(7), 5266. DOI . ADS .

    Article  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J.793, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M.: 2017, Three-dimensional magnetic reconnection and its application to solar flares. J. Plasma Phys.83(1), 535830101. DOI . ADS .

    Article  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2013, Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys.556, A50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res.120, 3328. DOI . ADS .

    Article  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2008, Evolution of solar wind structures from 0.72 to 1 AU. Adv. Space Res.41(2), 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys.254, 325. DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T., Thompson, W.T.: 2012, A parametric study of erupting flux rope rotation. Modeling the “cartwheel CME” on 9 April 2008. Solar Phys.281(1), 137. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lavraud, B., Ruffenach, A., Rouillard, A.P., Kajdic, P., Manchester, W.B., Lugaz, N.: 2014, Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.119(1), 26. DOI . ADS .

    Article  Google Scholar 

  • Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K.: 2007, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res.112, A06113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Ferguson, T.J.: 2003, Estimated errors in magnetic cloud model fit parameters with force-free cylindrically symmetric assumptions. J. Geophys. Res.108(A10), 1356. DOI . ADS .

    Article  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C.: 2007, On the variation of interplanetary magnetic cloud type through solar cycle 23: Wind events. J. Geophys. Res.112(A11), 10103. DOI . ADS .

    Article  Google Scholar 

  • Lepping, R.P., Wu, C.C.: 2010, Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys.28, 1539. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 au for the quiet solar phase: Wind observations. Solar Phys.212, 425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, J.: 2006, A summary of Wind magnetic clouds for years 1995–2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys.24, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2018, Wind magnetic clouds for the period 2013–2015: Model fitting, types, associated shock waves, and comparisons to other periods. Solar Phys.293(4), 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Müller-Mellin, R., Schroeder, P.C., Wang, L., Lin, R.P., Bale, S.D., Li, Y., Acuña, M.H., Sauvaud, J.-A.: 2008, A comprehensive view of the 2006 December 13 CME: From the Sun to interplanetary space. Astrophys. J.689, 563. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, R., Liu, C., Wang, S., Deng, N., Wang, H.: 2010, Sigmoid-to-flux-rope transition leading to a loop-like coronal mass ejection. Astrophys. J. Lett.725, L84. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys.2, 361.

    MathSciNet  MATH  Google Scholar 

  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res.108(A6), A01239. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res.110, A08107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys.290(5), 1371. DOI . ADS .

    Article  ADS  Google Scholar 

  • Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., Janvier, M.: 2016, Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays. Astron. Astrophys.592, A118. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Solar Phys.256, 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nakwacki, M., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys.535, A52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 au during the period 2000–2003. Solar Phys.232(1–2), 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A.: 2018, Elliptic-cylindrical analytical flux rope model for magnetic clouds. Astrophys. J.861(2), 139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nishimura, N., Marubashi, K., Tokumaru, M.: 2019, Comparison of cylindrical interplanetary flux-rope model fitting with different boundary pitch-angle treatments. Solar Phys.294(4), 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pal, S., Gopalswamy, N., Nandy, D., Akiyama, S., Yashiro, S., Makela, P., Xie, H.: 2017, A Sun-to-Earth analysis of magnetic helicity of the 2013 March 17–18 interplanetary coronal mass ejection. Astrophys. J.851(2), 123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J.659, 758. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rodriguez, L., Zhukov, A.N., Dasso, S., Mandrini, C.H., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Aran, A., Menvielle, M., Poedts, S., Schmieder, B.: 2008, Magnetic clouds seen at different locations in the heliosphere. Ann. Geophys.26, 213. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruffenach, A., Lavraud, B., Farrugia, C.J., Démoulin, P., Dasso, S., Owens, M.J., Sauvaud, J.-A., Rouillard, A.P., Lynnyk, A., Foullon, C., Savani, N.P., Luhmann, J.G., Galvin, A.B.: 2015, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.120, 43. DOI . ADS .

    Article  Google Scholar 

  • Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res.116(A4), A04108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shimazu, H., Vandas, M.: 2002, A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planets Space54, 783. ADS .

    Article  ADS  Google Scholar 

  • Su, Y.N., Golub, L., van Ballegooijen, A.A., Gros, M.: 2006, Analysis of magnetic shear in an X17 solar flare on October 28, 2003. Solar Phys.236, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J.652(1), 763. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Green, L.M.: 2015, Evolution of active regions. Living Rev. Solar Phys.12(1), 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Baker, D., Török, T., Pariat, E., Green, L.M., Williams, D.R., Carlyle, J., Valori, G., Démoulin, P., Kliem, B., Long, D.M., Matthews, S.A., Malherbe, J.-M.: 2014, Coronal magnetic reconnection driven by CME expansion – The 2011 June 7 event. Astrophys. J.788(1), 85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Geranios, A.: 2001, November 17–18, 1975, event: A clue to an internal structure of magnetic clouds? J. Geophys. Res.106, 1849. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys.398, 801. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E., Geranios, A.: 2015, Modeling of magnetic cloud expansion. Astron. Astrophys.583, A78. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E., Watari, S.: 2005, Magnetic clouds of oblate shapes. Planet. Space Sci.53, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P., Watari, S., Geranios, A., Antoniadou, E., Zacharopoulou, O.: 2006, Comparison of force-free flux rope models with observations of magnetic clouds. Adv. Space Res.38(3), 441. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vemareddy, P., Démoulin, P.: 2017, Successive injection of opposite magnetic helicity in solar active region NOAA 11928. Astron. Astrophys.597, A104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res.120(3), 1543. DOI . ADS .

    Article  Google Scholar 

  • Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res.121, 9316. DOI . ADS .

    Article  Google Scholar 

  • Wang, Y., Shen, C., Liu, R., Liu, J., Guo, J., Li, X., Xu, M., Hu, Q., Zhang, T.: 2018, Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. J. Geophys. Res.123(5), 3238. DOI . ADS .

    Article  Google Scholar 

  • Welsch, B.T.: 2018, Flux accretion and coronal mass ejection dynamics. Solar Phys.293(7), 113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Wu, C.-C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008–2012. Astrophys. J. Suppl.229, 29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for his/her comments which broaden the potential audience of the paper. S.D. acknowledges partial support from the Argentinian grants UBACyT (UBA), and PIP-CONICET-11220130100439CO. This work was partially supported by a one-month invitation of P.D. to the Instituto de Astronomía y Física del Espacio, and by a one-month invitation of S.D. to the Observatoire de Paris. This work was supported by the Programme National PNST of CNRS/INSU co-funded by CNES and CEA. S.D. is member of the Carrera del Investigador Científico, CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Démoulin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Démoulin, P., Dasso, S., Janvier, M. et al. Re-analysis of Lepping’s Fitting Method for Magnetic Clouds: Lundquist Fit Reloaded. Sol Phys 294, 172 (2019). https://doi.org/10.1007/s11207-019-1564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1564-x

Keywords

Navigation